DjiNN and Tonic: DNN as a Service and Its Implications for Future Warehouse Scale Computers

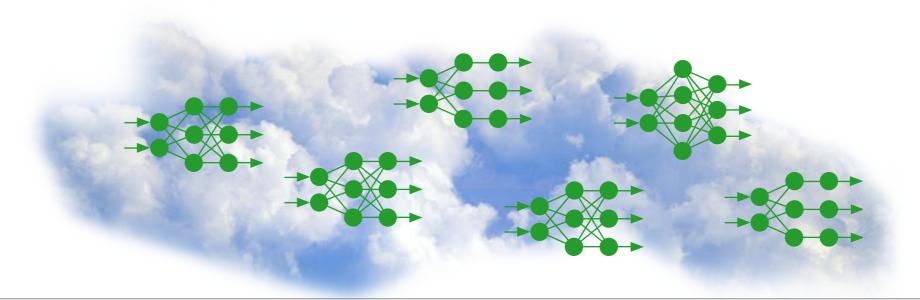
Johann Hauswald, Yiping Kang, Michael A. Laurenzano, Quan Chen, Cheng Li, Trevor Mudge, Ronald G. Dreslinski, Jason Mars, Lingjia Tang

University of Michigan — Ann Arbor, MI

"Set my alarm for 6am."

"What's the speed of light?"

"Who is this?"



SIRI WILL SOON UNDERSTAND YOU A WHOLE LOT BETTER

Forbes / Tech

EB 19, 2015 @ 1:06 PM

6,203 VIEWS

Microsoft's Deep Learning Project Outperforms Humans In Image Recognition

IBM buys 'deep learning' upstart Alchemy API, inhales 40,000 devs

Deep Neural Networks (DNNs)

Input Convolutional layer Pooling layer Feature Maps O O Feature Maps O Fully Connected layer

Inference

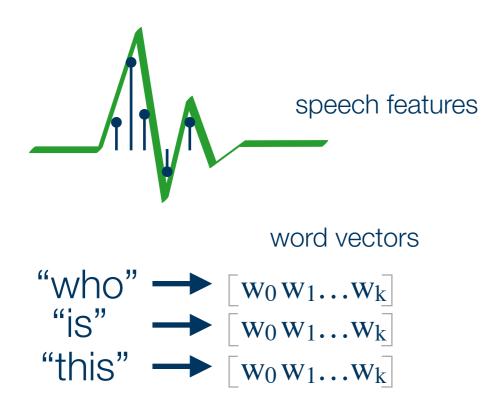
0.1 "Spiderman"

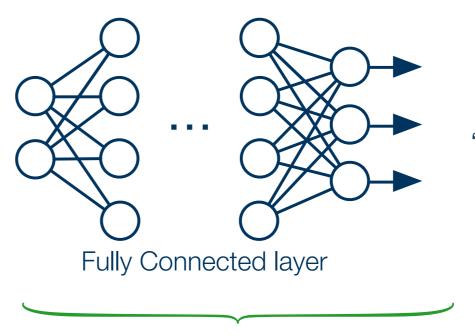
0.9 "Superman"

0.5 "Batman"

Network Architecture

Deep Neural Networks (DNNs)





Inference

"Who", "is", "this"

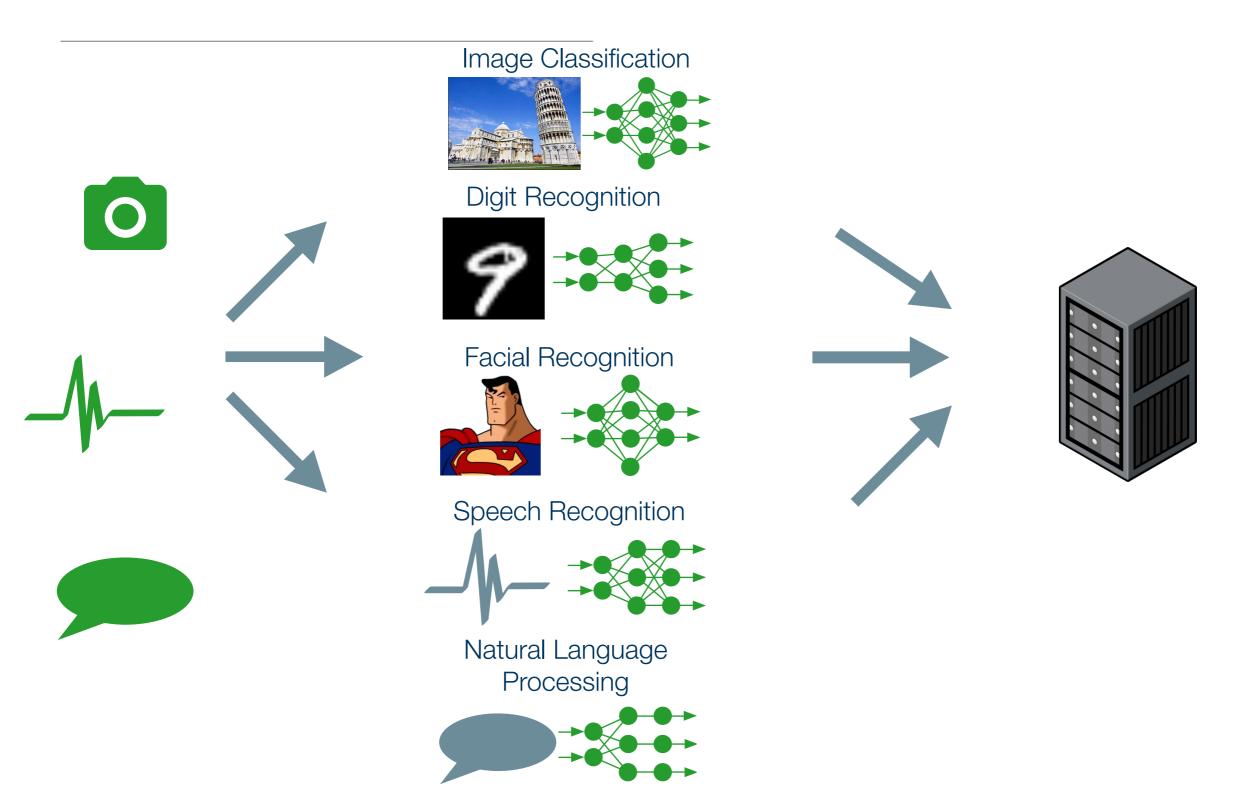
"Who" (PRONOUN)

"is" (VERB)

"this" (PRONOUN)

Network Architecture

DNN as a Service



DNN as a Service

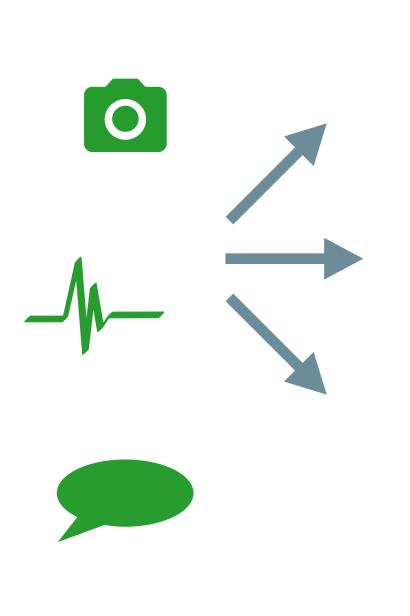


Image Classification

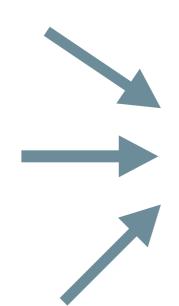
Digit Recognition

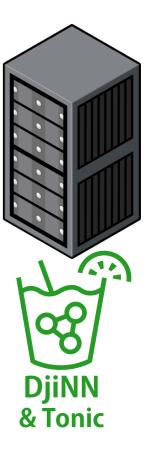
Facial Recognition

Speech Recognition

Natural Language Processing

Unified, highly optimized appliance for DNN





INSIDE THE ARTIFICIAL BRAIN THAT'S REMAKING THE GOOGLE EMPIRE

"We now have probably 30 or 40 different teams at Google using our infrastructure."

-Jeff Dean

DNN as a Service

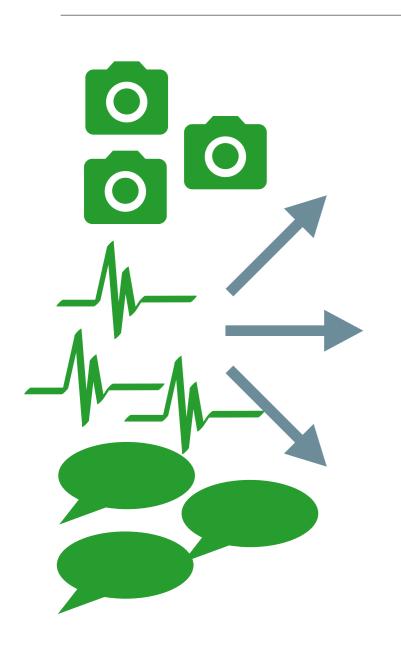


Image Classification

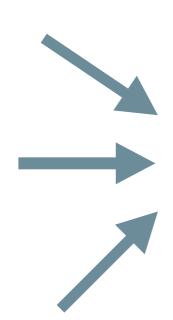
Digit Recognition

Facial Recognition

Speech Recognition

Natural Language Processing

Unified, highly optimized appliance for DNN



Challenge

Design a high throughput Warehouse Scale Computer (WSC) for DNN as a Service

Outline

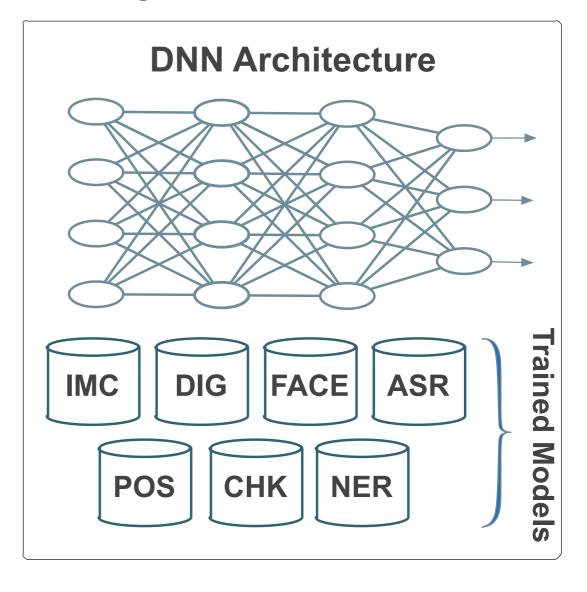
- DjiNN and Tonic: DNN as a Service
- Identifying Bottlenecks for DNN as a Service
- Designing a High Throughput System
- Future Warehouse Scale Computer (WSC) Designs
- Conclusion

DjiNN and Tonic: DNN as a Service

DjiNN Design Goals

- Single web-service for DNN
- Diverse applications
- Low overhead request processing

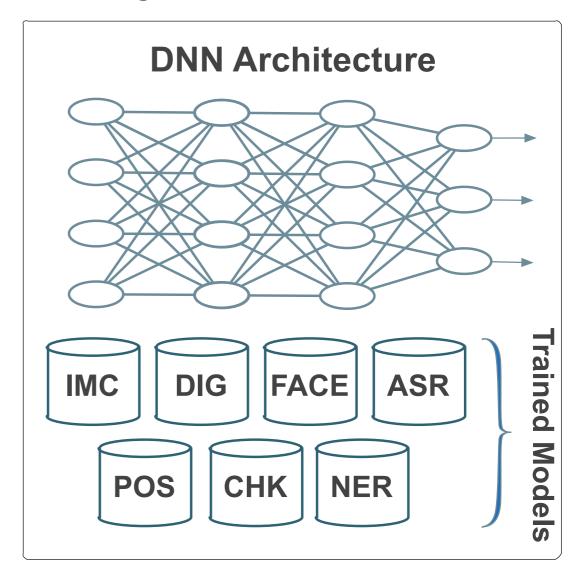
DjiNN DNN Service



DjiNN Implementation

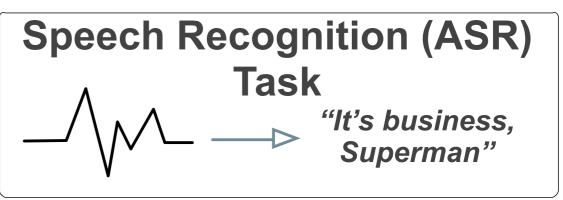
- Decoupled architecture
- Arbitrary network architecture support
- Memory resident models for thread pool
- More details in paper

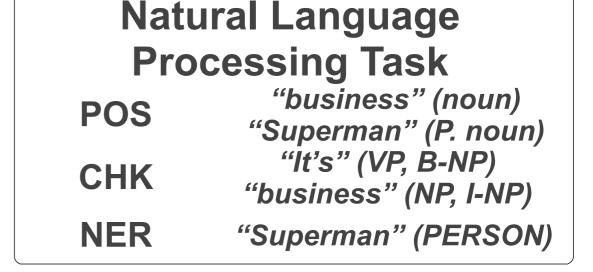
DjiNN DNN Service

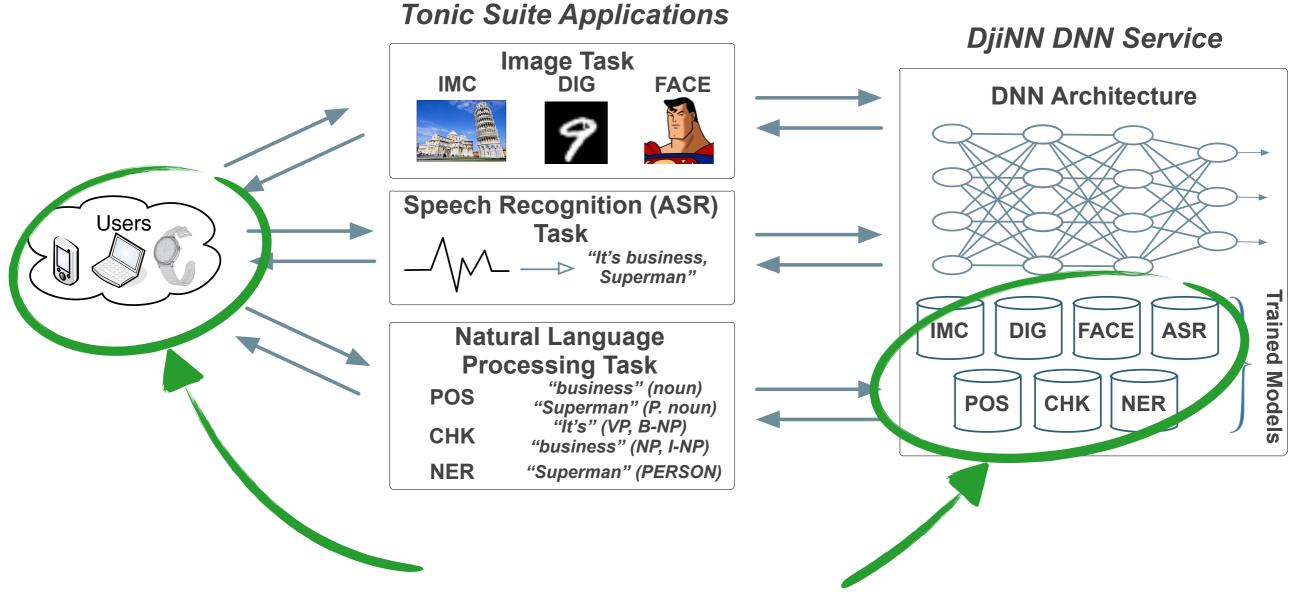


Tonic Suite

- End-to-end applications that make requests to the DjiNN Service
- Span image, speech, and natural language processing
- State-of-the-art neural network architectures





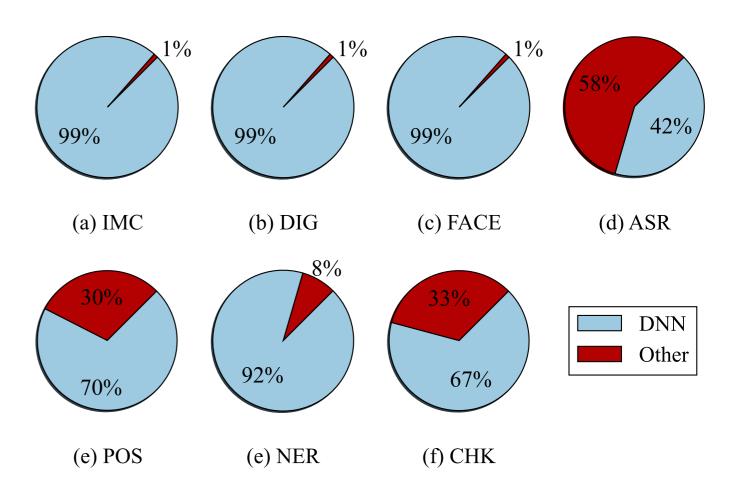


Release includes: inputs, pre-trained models, and modified Caffe

djinn.clarity-lab.org

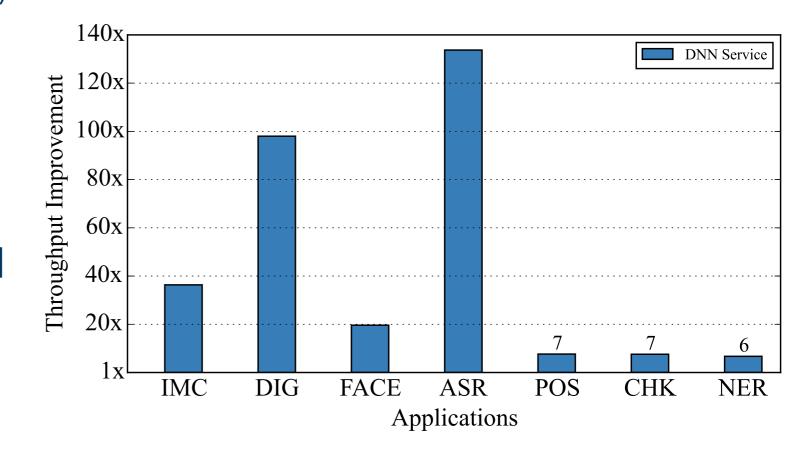
Identifying Bottlenecks for DNN as a Service

- Software: Caffe (modified)
- CPU: Intel Xeon E5-26202.10GHz
 - ATLAS (vectorized)

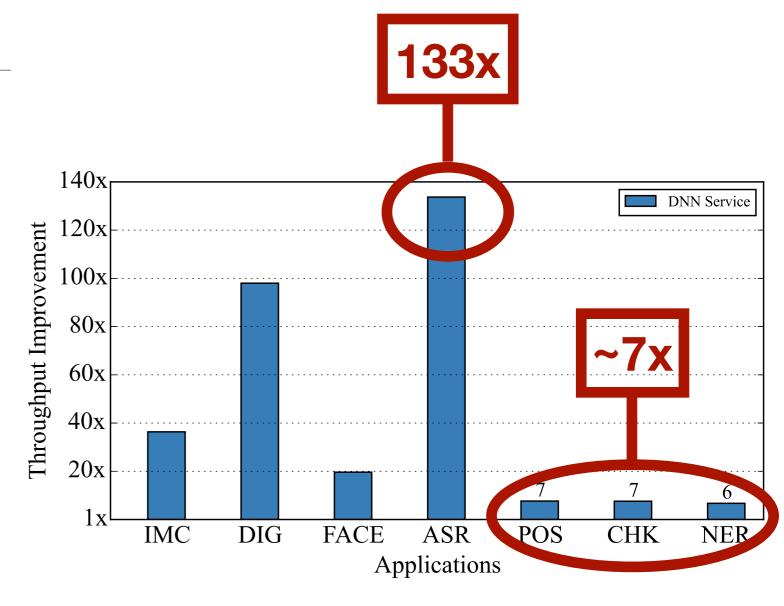


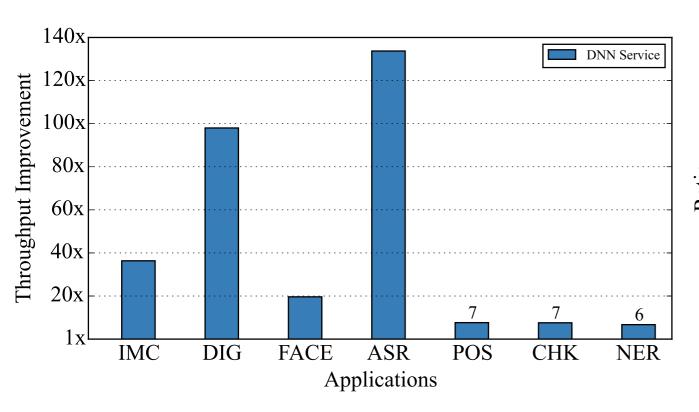
DNN: More than 80% of cycles

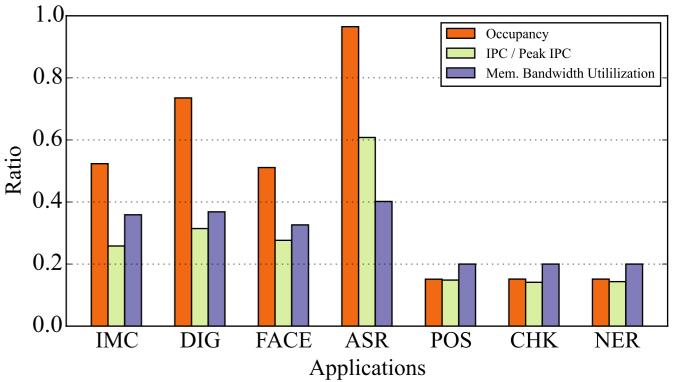
- Software: Caffe (modified)
- CPU: Intel Xeon E5-26202.10GHz
 - ATLAS (vectorized)
- GPU: NVIDIA Tesla K40M
 - cuDNN v1 and Caffe



- Software: Caffe (modified)
- CPU: Intel Xeon E5-26202.10GHz
 - ATLAS (vectorized)
- GPU: NVIDIA Tesla K40M
 - cuDNN v1 and Caffe





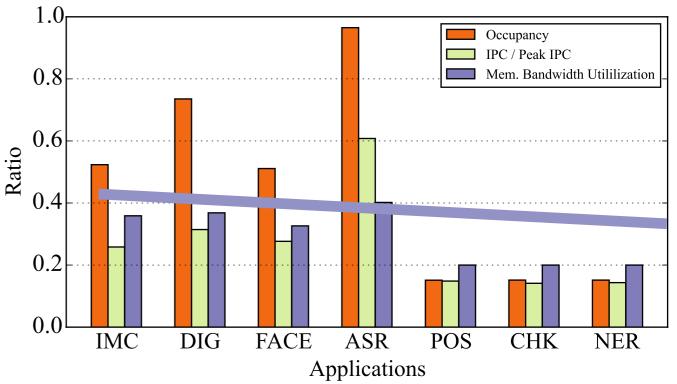


Throughput Improvement

GPU Profiling

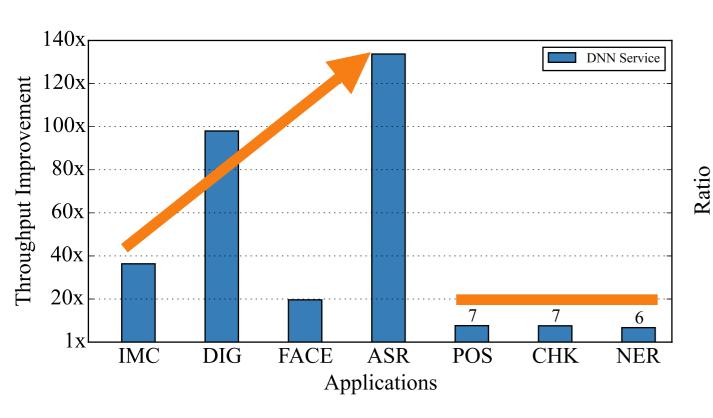
140xDNN Service 120xThroughput Improvement 100x80x60x 40x 20x1x**FACE ASR IMC** DIG POS **CHK NER Applications**

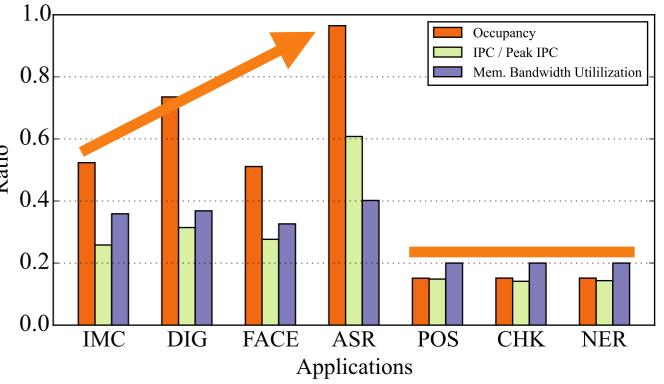
Low memory bandwidth utilization



Throughput Improvement

GPU Profiling





Throughput Improvement

GPU Profiling

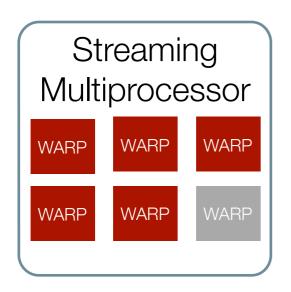
GPU is not fully utilized

Designing a High Throughput System

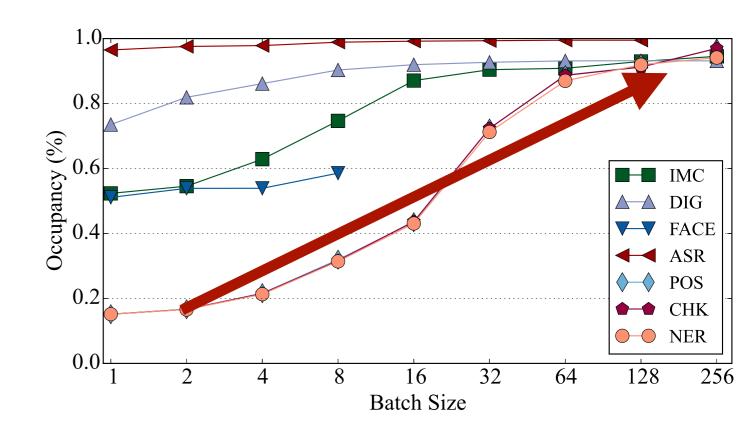
Designing a High Throughput System — Batching

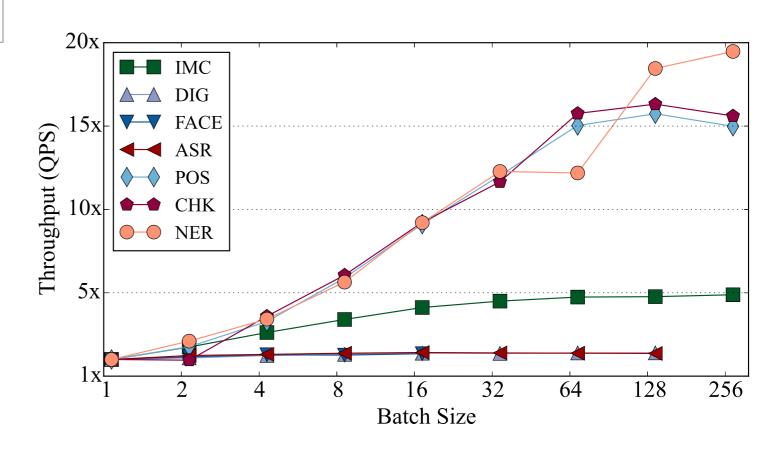
Batch Size:

	X 0	X 01	X02	X 03	X 04	X05
	\mathbf{X}_1	X 11	X 12	X 13	X 14	X15
	•	•	•	•	•	•
	•	•	•	•	•	•
	•	•	•	•	•	•
	$\mathbf{X}_{\mathbf{d}}$	$\mathbf{X}_{\mathbf{d}}$	$\mathbf{X}_{\mathbf{d}}$	$\mathbf{X}_{\mathbf{d}}$	$\mathbf{X}_{\mathbf{d}}$	$\mathbf{X}_{\mathbf{d}}$



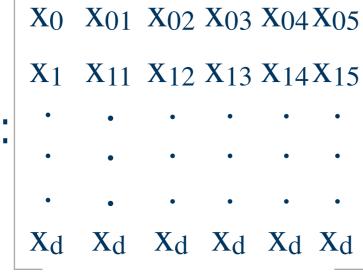
✓ High Occupancy

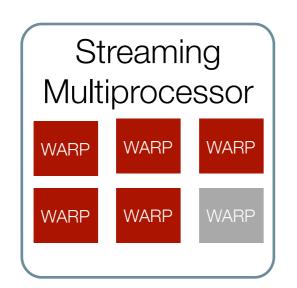




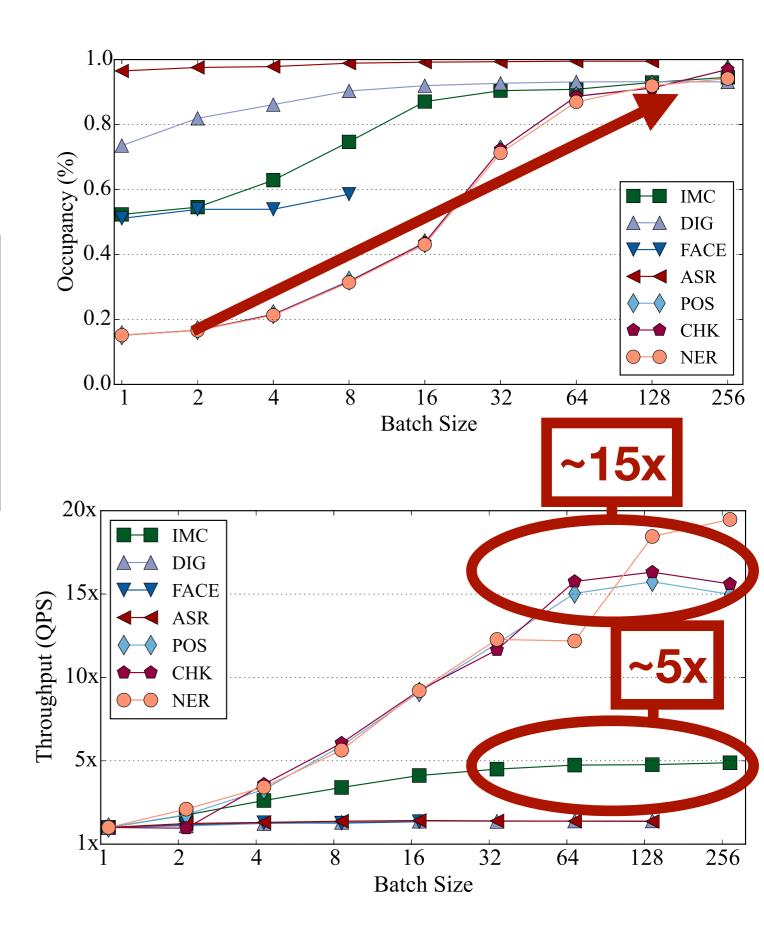
Designing a High Throughput System — Batching

Batch Size:



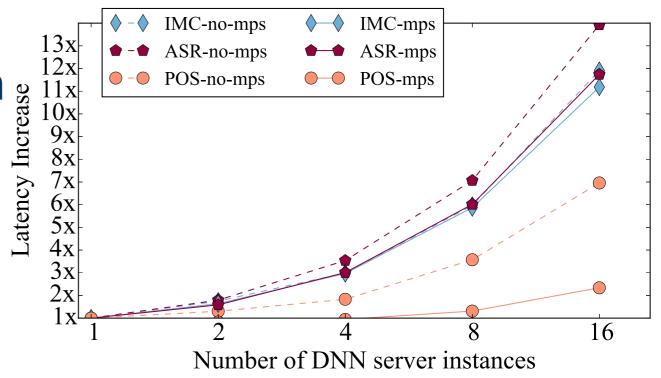


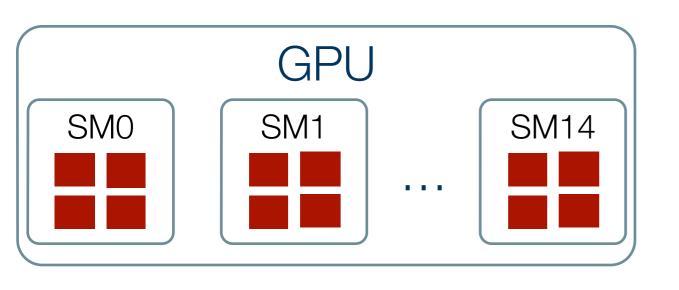
✓ High Occupancy



Designing a High Throughput

- Leverage NVIDIA Multi-Process Service (MPS) [1]



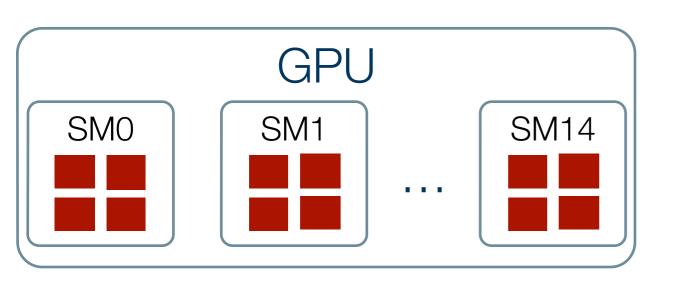


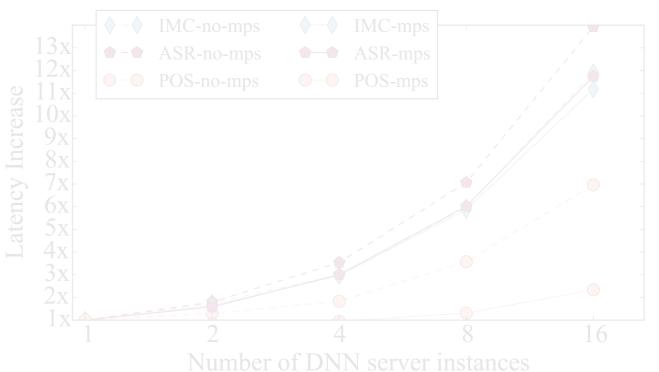


[1] "Multi-Process Service" https://docs.nvidia.com/deploy/pdf/CUDA_ Multi_Process_Service_Overview.pdf

Designing a High Throughput System — Concurrent Execution

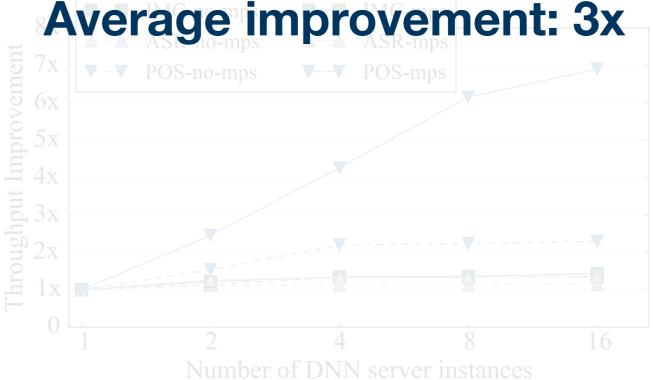
- Launch concurrent DNN services on the GPU
- Leverage NVIDIA Multi-Process Service (MPS) [1]





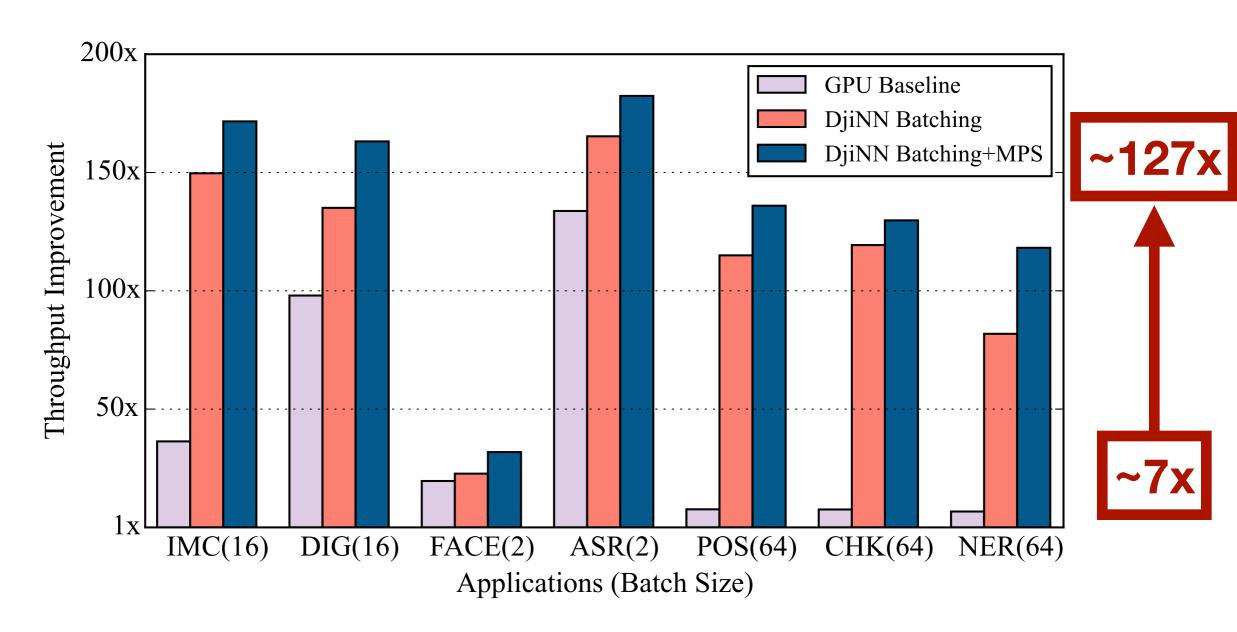
4 DNN concurrent instances

Average improvement: 3x



[1] "Multi-Process Service" https://docs.nvidia.com/deploy/pdf/CUDA_ Multi_Process_Service_Overview.pdf

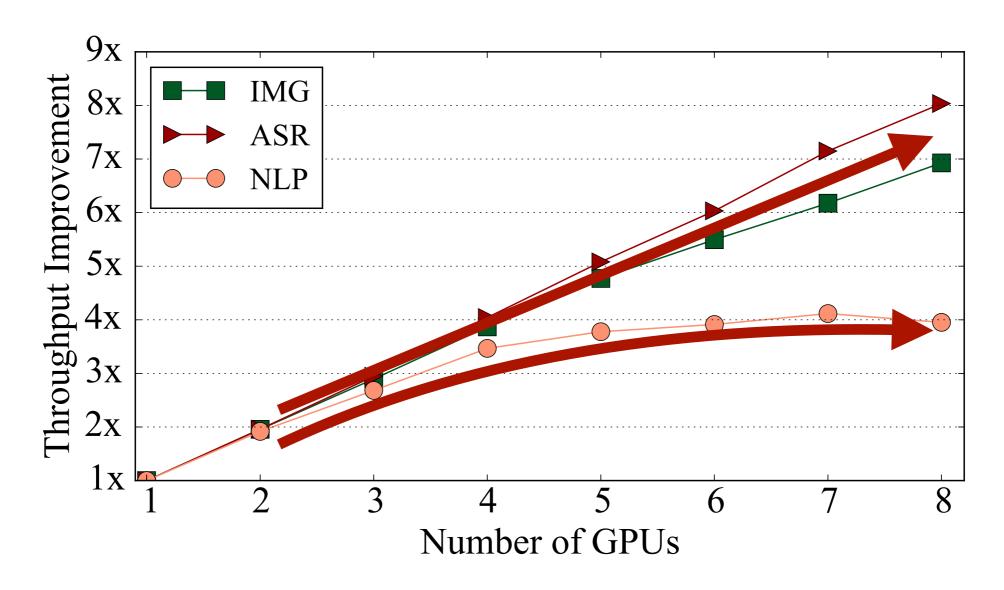
Designing a High Throughput System



Average throughput improvement: 133x

1 GPU

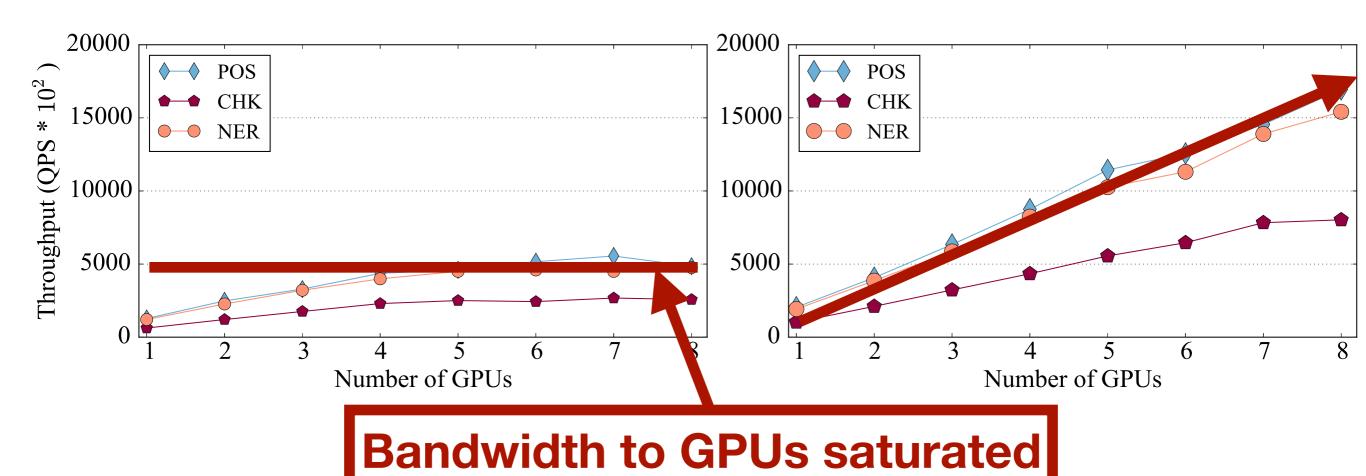
GPU Scaling



Average throughput improvement using optimizations: 771x

Bandwidth Requirements for Peak Throughput

Experimental setup: eliminate any data transfer to GPU

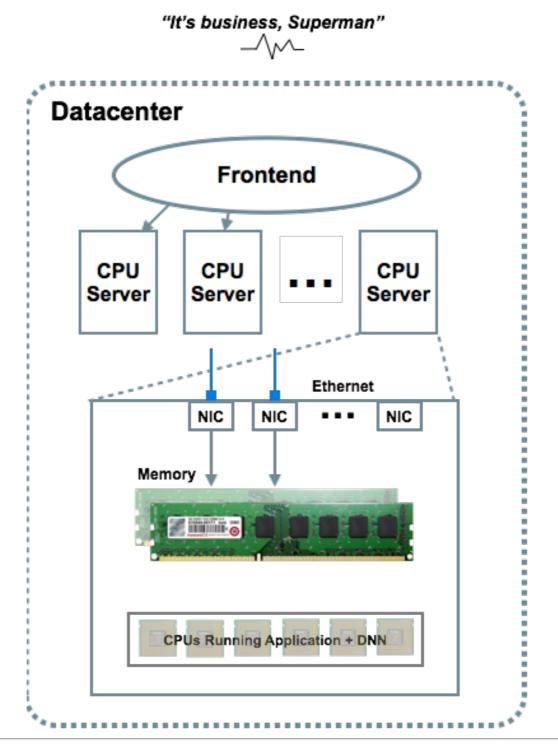


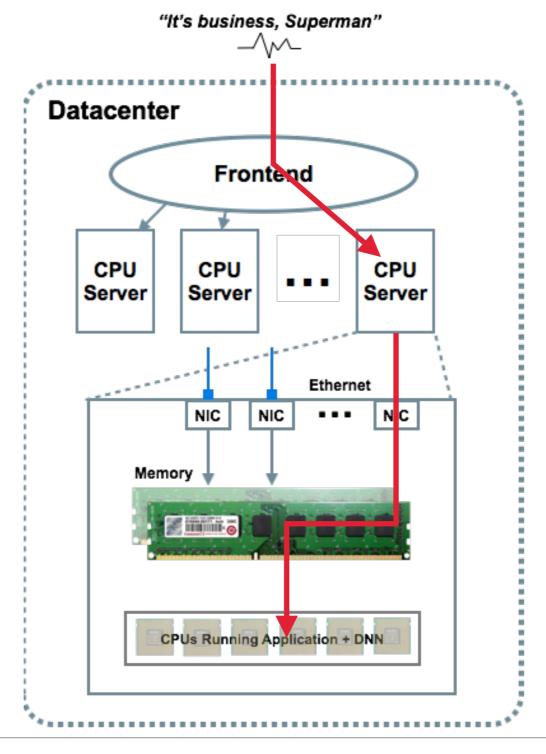
NLP requires more bandwidth to GPUs

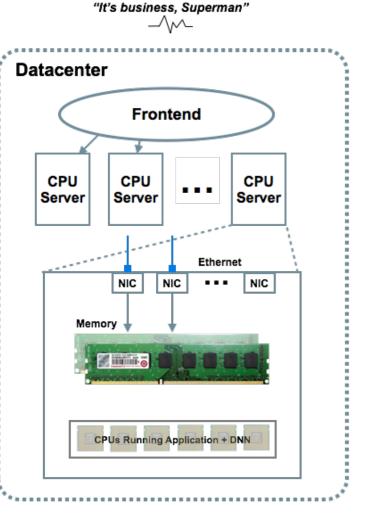
Single Server Key Insights

- DNNs do not benefit equally from optimizations
 - High communication Natural Language Processing (NLP) tasks require far more bandwidth
- Optimizing compute platforms depends on DNN's computation and communication characteristics

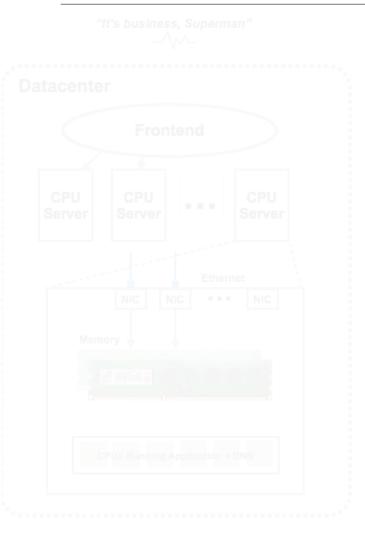
Future Warehouse Scale Computer (WSC) Designs



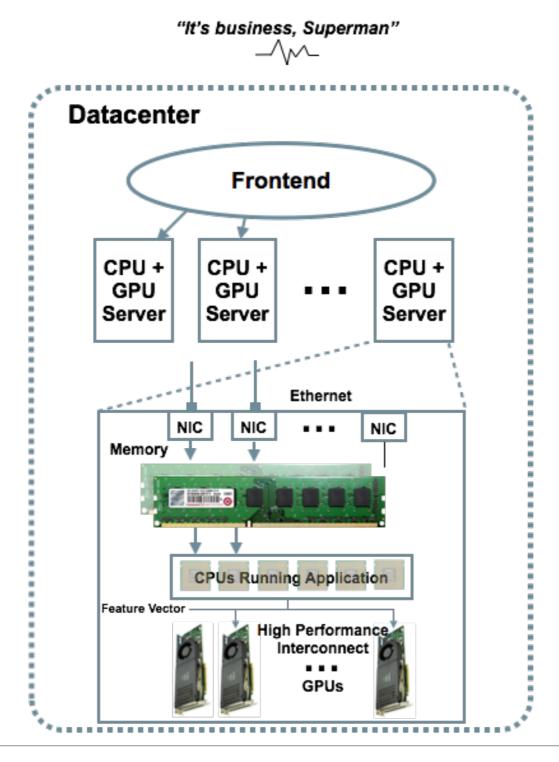


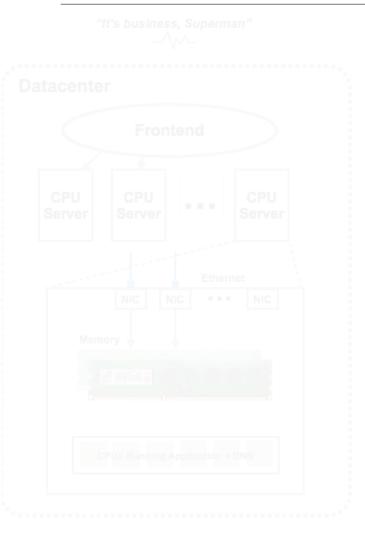


CPU-only:
+no extra HW
-low throughput

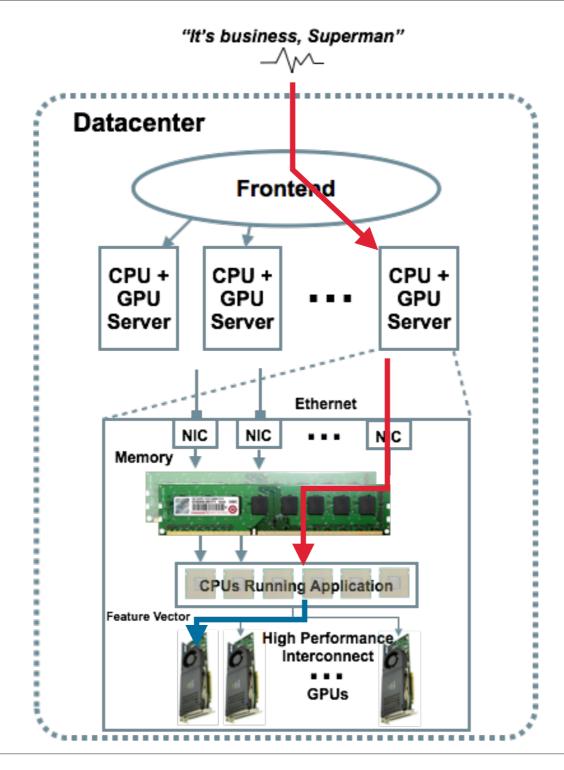


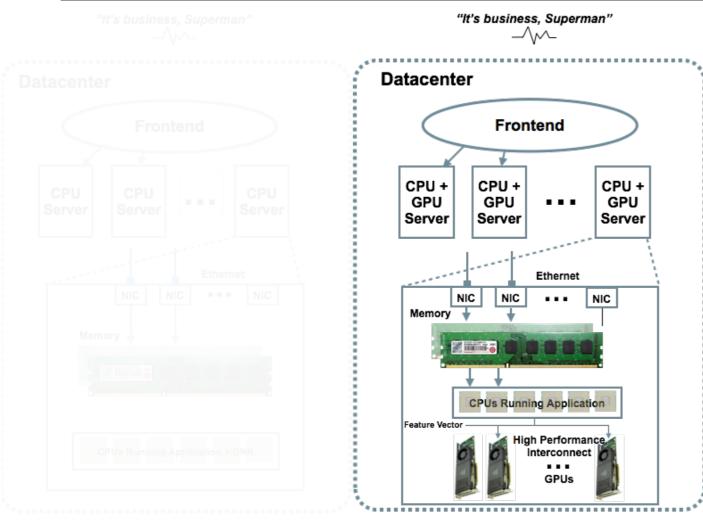
CPU-only: +no extra HW low throughput



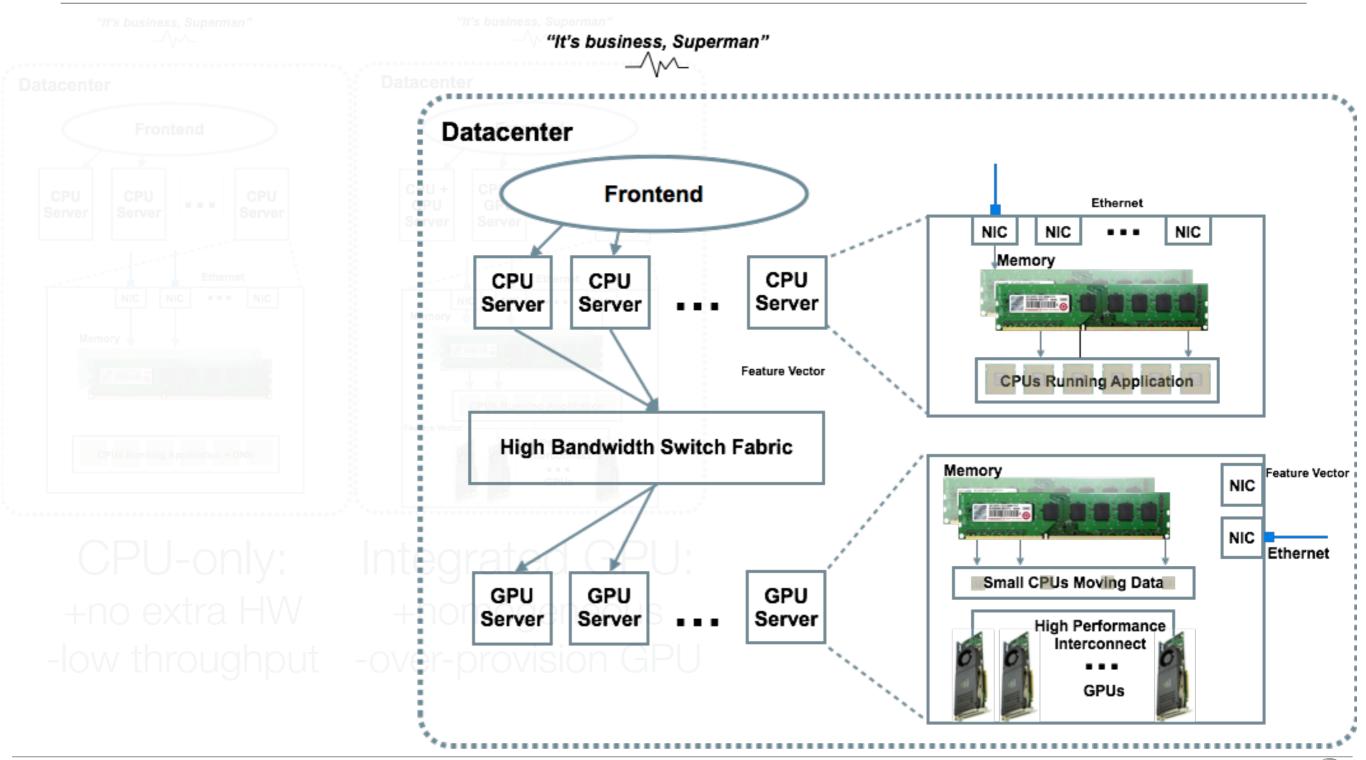


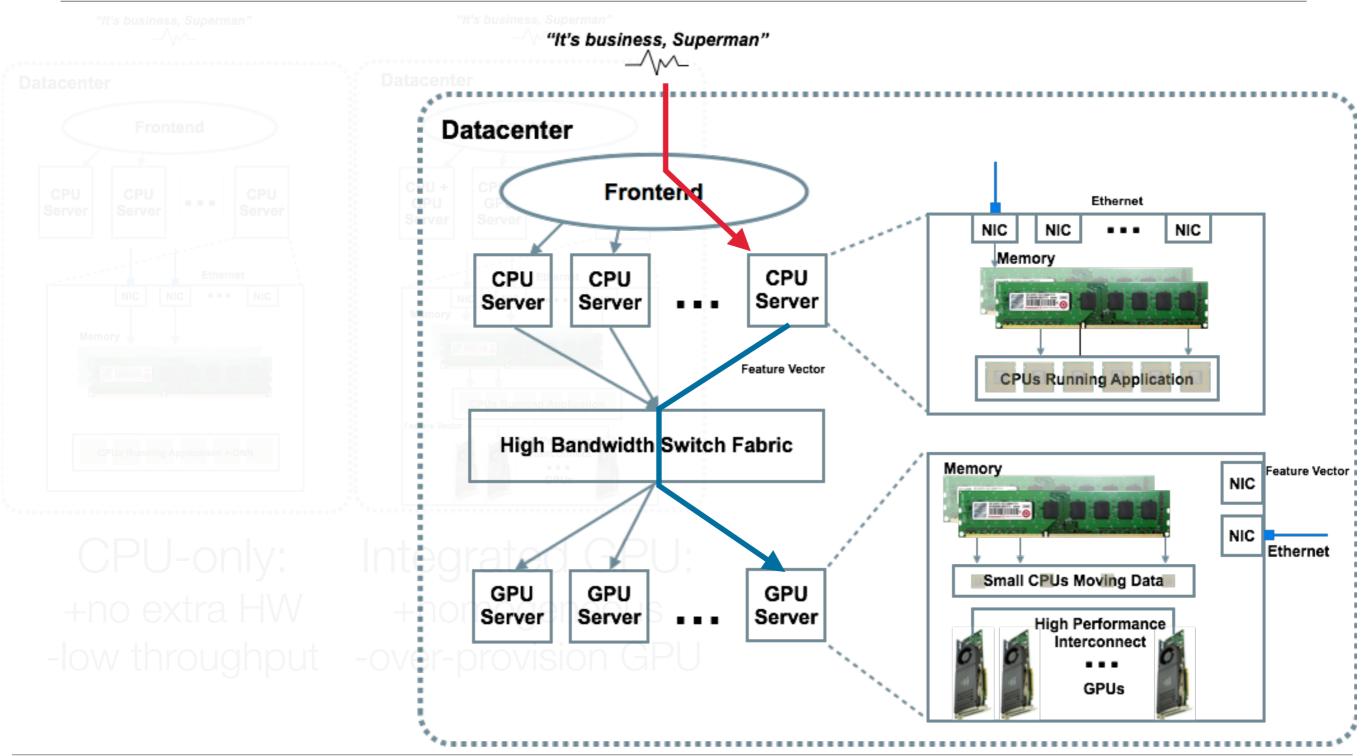
CPU-only: +no extra HW low throughput

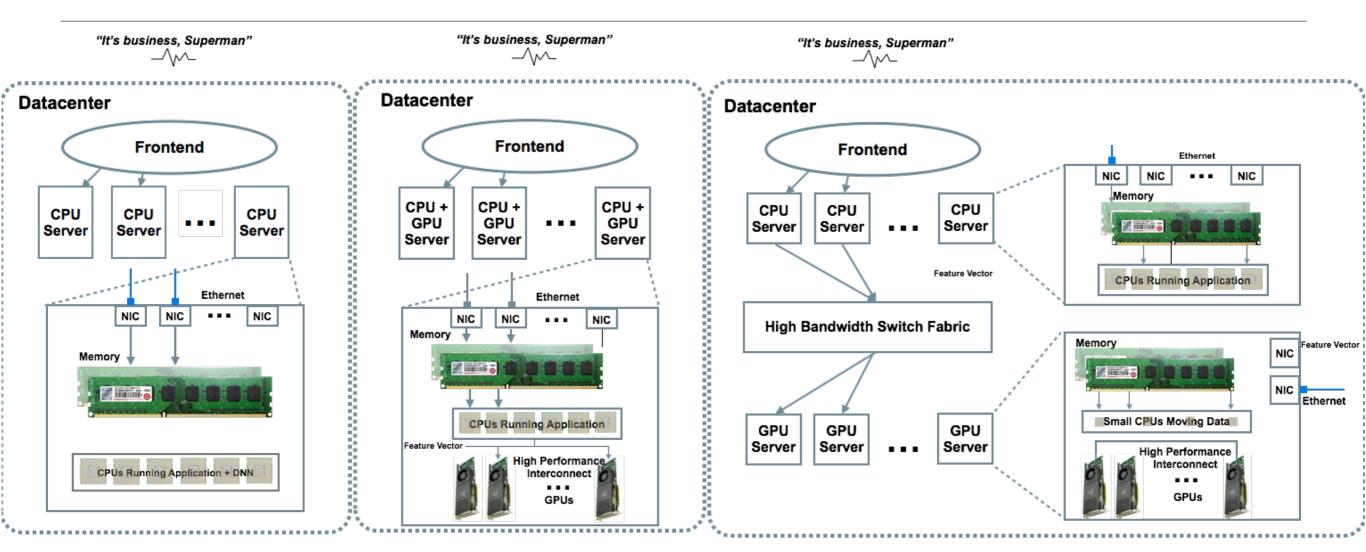




Integrated GPU: +homogeneous -low throughput -over-provision GPU





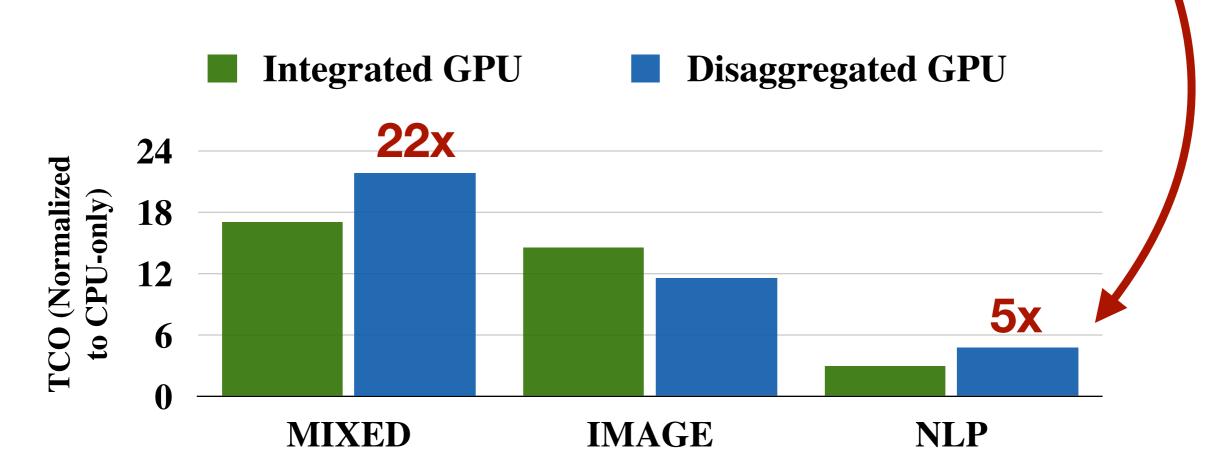


+no extra HW

CPU-only: Integrated GPU: +homogeneous -low throughput -over-provision GPU Disaggregated GPU: +decouple CPU/GPU -data transfer

Future WSC Designs — Total Cost of Ownership (TCO)

- Expand Barroso [1] model with GPU and networking costs
- Addressing the bandwidth bottleneck further improves NLP TCO (more details in paper)



[1] Barroso, Luiz André, et. al. "The datacenter as a computer: An introduction to the design of warehouse-scale machines."

WSC Scale Key Insights

- TCO improvement dependent on the DNN workload composition
 - Bandwidth constrained workloads underutilize GPUs in Integrated design
 - Sufficient bandwidth is critical to fully utilize resources

Conclusion

- Unified, state-of-the-art, highly optimized DNN as a Service
- DNNs have different compute and communication characteristics
 - Do not benefit equally from optimizations
 - Characteristics impact system designs

Thank you

djinn.clarity-lab.org

