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ABSTRACT

In this paper, we present a direct methodology and frame-
work for the measurement and characterization of an appli-
cation’s cross-core interference sensitivity on multicore mi-
croarchitectures. While prior works use indirect indicators,
such as last level cache miss rate, to infer an application’s
cross-core interference sensitivity, our approach is direct, in
that it characterizes the application’s cross-core interference
sensitivity using the performance impact due to actual con-
tention. Our methodology and framework, the Cross-core
interference Profiling Environment, or CiPE, is composed
of a lightweight runtime environment on which a host appli-
cation runs, along with a carefully designed contention syn-
thesis engine that executes on a neighboring core. CiPE ma-
nipulates the co-running contention synthesis engine, while
monitoring and analyzing the resulting dynamic impact on
the host application.

CiPE is able to characterize the cross-core interference
sensitivity of the entire application, its individual phases, or
source level code regions. To demonstrate the effectiveness
of CiPE, we use CiPE characterizations to address two press-
ing problems. First, we use CiPE characterizations to per-
form contention conscious batch scheduling that minimizes
cross-core interference, resulting in a 12% performance im-
provment on average when applied to the SPEC2006 bench-
mark suite, and beyond 20% in the case of mcf and omnetpp.
Second, we use CiPE to design a performance analysis tool
that is capable identifying contentious bottlenecks in appli-
cation code.

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent Program-
ming—parallel programming ; D.3.4 [Programming Lan-
guages]: Processors—run-time environments, compilers, op-
timization, debuggers; D.4.1 [Operating Systems]: Pro-
cess Management—scheduling ; D.4.8 [Operating Systems]:
Performance—measurements, monitors
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1. INTRODUCTION
As multicore architectures become ever more prolific, tech-

niques to characterize and understand application behavior
when executing along with co-running applications on neigh-
boring cores remain few. One of the most critical program
characteristics in this domain is that of cross-core interfer-
ence. An application suffers cross-core interference when
its performance is negatively impacted by contending for
shared resources with another application process or thread
concurrently executing on a neighboring core.

While prior work has demonstrated the importance of
characterizing an application’s cross-core interference sen-
sitivity, current best known techniques use indirect meth-
ods [27, 13, 2, 29, 6]. An indirect analysis is one that infers
an application’s cross core interference sensitivity. An ex-
ample of an indirect analysis is the usage of an application’s
last level cache missrate to predict its cross-core interfer-
ence sensitivity [13]. A direct analysis on the other hand,
is one that characterizes the impact on application perfor-
mance when contention occurs in comparison to when no
contention is present. In this paper, we present the Cross-
core interference Profiling Environment, CiPE, the first di-
rect methodology and framework for the characterization of
an application’s sensitivity to cross-core performance inter-
ference.

The key insight and observation motivating the design of
our cross-core profiling methodology is the fact that con-
tention for shared cache and memory resources is an in-
trinsically dynamic property of the application’s memory
behavior, coupled with the intricacies of the particular mi-
croarchitectural and memory subsystem design. Therefore,
we employ a direct, empirical, online characterization ap-
proach.

As an application executes on our CiPE environment, a
carefully designed contention synthesis engine is spawned
on a neighboring core to run alongside the application. This
contention synthesis engine is dynamically manipulated by
CiPE, and the resulting impact on the host application is
analyzed.



To demonstrate the effectiveness of CiPE, we apply CiPE
to two real problems on current state-of-the-art general pur-
pose multicore architectures. These problems include schedul-
ing to minimize cross-core interference, and identifying con-
tentious bottlenecks in application source code.

The understanding of an application’s cross-core inter-
ference sensitivity enables contention conscious application
co-scheduling. Applications that place a higher demand
on shared memory resources can be co-located with appli-
cations that place a lower demand on shared memory to
gain better overall performance and throughput. In this
work we show that contention conscious scheduling signifi-
cantly reduces cross-core interference and improves applica-
tion throughput. Using our approach, we were able to im-
prove the performance of the contention sensitive SPEC2006
benchmarks by 12% on average and up to 24% in the case
of mcf.

In addition to contention conscious scheduling, we use
our cross-core interference sensitivity profiling information
to design a performance analysis and debugging tool that
identifies contentious code regions in application code. To
the best of our knowledge, this is the first performance anal-
ysis and debugging tool capable of identifying contentious
code regions by measuring actual contention. To accomplish
this profiling technique, we take phase level CiPE profiles
with the highest contention sensitivity rating and correlate
this sensitivity back to source code. As a result we are able
to identify sources of contention sensitivity in the original
application source code. The ability to detect the most con-
tention sensitive application phases and regions of source
code allows the user to determine application bottlenecks.

The contributions of this work are:

• A general direct measurement technique and metric for
quantifying cross-core interference sensitivity, and the
design of CiPE, a framework that employs this mea-
surement technique along with contention synthesis to
characterize application cross-core interference sensi-
tivity.

• The design of a contention synthesis engine, including
a thorough evaluation of multiple contention synthesis
methods and investigation of whether various forms
of contentious behavior produce differing characteriza-
tions.

• The design and implementation of both: 1) a con-
tention conscious scheduling approach using the CiPE
characterization methodology and 2) a performance
analysis approach that identifies regions of code that
exhibit high sensitivity to cross-core interference on
current microarchitectures.

Next, in Section 2 we demonstrate the problem of cross-
core interference. We then present an overview of our frame-
work in Section 3. Section 4 discusses our cross-core interfer-
ence characterization methodology. In Section 5, we discuss
the design of our contention synthesis engine. We evaluate
our methodology and framework in Section 6, discuss related
work in Section 7 and finally conclude in Section 8.

2. CROSS-CORE INTERFERENCE
The memory subsystem on current commodity multicore

architectures is shared among multiple processing cores. Two
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Figure 1: Performance impact due to contention
from co-location with LBM.

representative examples of the state of the art multicore chip
designs are the Intel Core i7 Quad Core chip and AMD’s
Phenom X4 Quad Core. Intel’s Core i7 has four processing
cores sharing a large 8mb L3 cache. AMD’s Phenom X4 also
has four cores and shares a 6mb L3 cache. These chips were
designed to accommodate 4 simultaneous streams of exe-
cution. However, as we can see through experimentation,
their shared caches and memory subsystem often cannot ef-
ficiently accommodate even 2 co-running processes.

Figure 1 illustrates the potential cross-core interference
that can occur when multiple co-running applications are
executing on the Core i7 and Phenom X4 architectures de-
scribed above. In this experiment we study the cross-core
performance interference suffered by each of the SPEC2006
benchmarks when co-running with lbm, one of the SPEC2006
benchmarks known be an especially heavy user of the on-
chip memory subsystem. Figure 1 shows the slowdown of
each benchmark due to the cross-core interference from lbm.
Each application was executed to completion on their ref

inputs. On the y-axis we show the execution time of the
application while co-running with lbm normalized to the
execution-time of the application running alone on the sys-
tem. The first bar in Figure 1 presents this data for the
Core i7 architecture and the second bar for the Phenom X4.
As this graph shows, there are severe performance degra-
dations due to cross-core interference on a large number of
Spec benchmarks. The large last level on-chip caches of
these two architectures do little to accommodate many of
these co-running applications. On a number of benchmarks
including lbm, mcf, omnetpp, and sphinx, this degradation
approaches 35%.

In addition to the general performance degradation, this
sensitivity to cross-core interference is particularly unde-
sirable for real time and latency sensitive application do-
mains. In the latency sensitive domain of web search, for
instance, cross core interference can cause unexpected slow-
downs, negatively impacting the QoS on a search query. A
commonly used solution in industry is to simply disallow the
co-location of latency sensitive applications with others on
a single machine, resulting is lowered utilization and higher
energy cost [14].

Note that not all applications are effected by the con-
tention properties of their co-runners. Applications such as
hmmer, namd, and povray appear to be immune to lbm’s cross
core interference, demonstrating that cross-core interference
sensitivity varies substantially across applications.

It is clear from Figures 1 that knowledge of an applica-
tion’s sensitivity to cross-core performance interference is
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critical to understanding the dynamic interaction and the re-
sulting performance implications of co-running applications
on current commodity multicore architecture. In this work,
we aim to understand this sensitivity at three levels: entire
applications, their individual phases, and their source level
code regions.

3. OVERVIEW
In this section, we describe CiPE and present an overview

of our approach.

3.1 Description and Insight
CiPE is a profiling analysis approach capable of character-

izing an applications cross-core interference sensitivity. To
perform this characterization, an application must be run
only once on our CiPE framework. This characterization
produces application-level and phase-level information that
can be subsequently used for a range of purposes such as
contention-conscious scheduling, performance analysis and
debugging, and a host of other uses.

It is important to remember, however, that since the de-
sign of the underlying architecture and memory subsystem
determine the potential for cross-core interference, each CiPE
profile represents the application’s cross-core interference
sensitivity on the underlying architecture on which the pro-
file was collected. For example a multicore chip with core-
private L1 caches big enough to contain the working set of
lbm could run multiple instances of lbm with no cross-core
interference. On this architecture lbm is not sensitive to
cross-core interference. This is not the case on other chips
whose core-private caches cannot accommodate lbm, such as
the Core i7 or Phenom X4. This insight about the nature of
cross-core interference further motivates having a direct ap-
proach like CiPE. While the profiles produced by CiPE are
representative of a particular underlying architecture and
those that are similar, the characterization methodology,
and CiPE itself, is portable from chip generation to chip
generation.

3.2 Profiling Environment
Figure 2 provides an overview of CiPE running on a mul-

ticore architecture with two separate cores sharing an on-
chip cache and memory subsystem. The shaded boxes rep-
resent our CiPE profiling framework, which is composed of
the CiPE runtime and a contention synthesis engine (CSE).

As shown on the left side of Figure 2, the host application
is monitored throughout its execution by the CiPE runtime.
Before the execution of the host application, the CiPE run-
time spawns the CSE on a neighboring core, as shown to the
right of the figure. This CSE shares the cache and memory
subsystem of the host application. As the application ex-
ecutes, the CSE aggressively accesses memory causing as
much cross-core interference as possible. The CiPE runtime
manipulates the execution of the CSE allowing bursts of exe-
cution to occur by turning the CSE on and off. Slowdowns in
the application’s instruction retirement rate that result from
this bursty execution are monitored using the hardware per-
formance monitoring (HPM) information [8] and are used
to characterize its sensitivity. This intermittent control of
the CSE and monitoring of the HPM are achieved using a
periodic probing approach [15]. A timer interrupt is used
to periodically execute the monitoring and profiling direc-
tives. Periodic probing has shown to be a very low overhead
approach for the dynamic monitoring and analysis of appli-
cations. In the next section, we present the analysis used
to measure the cross-core interference sensitivity, and Sec-
tion 5 presents the design of the contention synthesis engine.

Algorithm 1: CiPE Core Algorithm

Description: This main loop is executed throughout the

lifetime of the host application.

Initialize_CSE();
CSE_Off();
CSE Satus← dormant;

while application running do
Let_App_Run(probe time);
if CSE Status equals active then

CSE active ir ← Read_PMU(instructions retired);
Characterize_CIS(CSE dormant ir,CSE active ir);
Record_Profile();
CSE Satus← dormant;

CSE_Off();
end

else if CSE Status equals dormant then
CSE dormant ir ← Read_PMU(instructions retired);
CSE Satus← active;

CSE_On();
end

end

The core algorithm of our CiPE runtime is presented in
Algorithm 1. In this algorithm, CSE Status (line 3) is a
flag used to denote whether the CSE engine is executing
(active) or sleeping (dormant). CSE active ir (line 7) and
CSE dormant ir (line 14) records the value of the instruc-
tions retired performance counter available in most current
microarchitectures. The periodic probing interval is set with
probe time. CSEOn() and CSEOff() (lines 11 and 16) turn
the contention synthesis engine on and off (described in Sec-
tion 5). Characterize_CIS() calculates a cross-core inter-
ference sensitivity score (described in Section 4). Our CiPE
Algorithm runs continuously for the duration of the host
application’s execution.

As the algorithm shows, the performance monitors are
read at every probe time interval. A sample of the instruc-
tions retired is collected when the CSE is active, and an-
other is collected when the CSE is dormant. Both samples
are passed as input to the cross-core sensitivity characteri-
zation routine Characterize_CIS(), and finally recorded by
Record_Profile().
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4. QUANTIFYING SENSITIVITY
In this section, we present the metrics and measurements

used to quantify cross-core interference sensitivity (CIS).
This analytical model is used for the Characterize_CIS()

function presented in Algorithm 1.

4.1 Defining Sensitivity (CIS)
We define an application’s cross-core interference sensitiv-

ity in terms of performance degradation. Our direct metric
to characterize an application’s cross-core interference sensi-
tivity is the normalized difference between an application’s
IPC (instruction per cycle) in the presence of contention and
its IPC when it is running alone. CIS can be studied at a
fine granularity continuously during an application’s execu-
tion. The resulting CIS report would reveal dynamic phases
of the application’s sensitivity characteristics. We use the
following formula to define CIS at any time point ti during
an execution:

CISti
=

IPCno c,ti
− IPCc,ti

IPCno c,ti

(1)

where IPCno c,ti
is the application’s IPC with no con-

tention at time ti, and IPCc,ti
is the application’s IPC in

the presence of contention at time ti. The intuition of the
formula is shown in Figure 3. Here we present an illustrative
diagram of an application’s two IPC curves of its two exe-
cutions, with and without contention respectively. At time
ti, CIS is represented by the distance between two points at
ti on two IPC curves, IPCno c,ti

and IPCc,ti
, then normal-

ized by the IPC with no contention IPCno c,ti
. Compared

to using other metrics such as cache misses to indirectly infer
the application’s sensitivity, CIS directly measures sensitiv-
ity using the percentage of and application’s performance
(IPC) that is lost due to cross-core interference. Notice that
executions with and without contention may vary in time to
finish so one IPC curve may need to be normalized for the
sake of the calculation.

CIS can also be studied at an application level to charac-
terize the application’s general intrinsic sensitivity to cross-
core interference. This can be viewed as the average distance
between two curves, and can be graphically interpreted as
the area between the two curves normalized to the area un-
der the curve for IPC with no contention as shown in Fig-
ure 3 and the formula:

CISavg =

R te

ts
IPCno c −

R te

ts
IPCc

R te

ts
IPCno c × (te − ts)

(2)

= (IPCno c − IPCc)avg (3)

where ts and te is the start and end point of the time period

we are characterizing. This can also be calculated simply as
the average CIS throughout the execution, as shown in the
formula.

4.2 CIS Sampling Methodology
Given the above CIS definition, our CiPE system provides

a novel approach to calculating, monitoring and profiling
CIS through execution. The CiPE system invokes the con-
tention synthesis engine to inject cross-core interference at
regular frequent intervals, which facilitates direct measure-
ment and profiling of contention’s impact on an application’s
performance. To measure the difference between IPCs with
and without contention, CiPE system uses an bursty sam-
pling methodology. CiPE system first turns off the synthesis
engine for a sample interval, collects the host application’s
IPC without contention, then in the immediately-following
sample interval, turns on the synthesis engine to collect the
application’s IPC under the synthesized contention. CiPE
uses these two adjacent samples to approximate Formula 1
by approximating IPCno c,ti

using IPCno c,ti+1 , as shown
in the following formula:

CISti
≈

IPCno c,ti+1 − IPCc,ti

IPCno c,ti+1

(4)

where ti+1 − ti is the sample interval. Notice that the in-
terval from ti−1 to ti is when CiPE has the synthesis engine
on to generate contention, and at ti, IPCc,ti

is collected.
From ti to ti+1 the synthesis engine is off and IPCno c,ti+1

is sampled at ti+1. We call the characterization using this
formula, the CIS score.

The above formula is used to generate CIS score at ev-
ery sample interval along the application’s execution. Also,
we can define the application’s average CIS score using the
following formula to calculate the average of all CIS scores
during the execution to approximate Formula 2:

CISavg ≈

Pn

i=0
CISti

n
(5)

where n is the number of samples.

5. CONTENTION SYNTHESIS
In this section, we discuss the challenge and task of syn-

thesizing contention.

5.1 Challenge of Contention Synthesis
The type of data access pattern and the way that data is

mapped into the cache is very important to consider when
constructing the CSE. Structures such as hardware cache
prefetchers and victim caches can avert poor and contentious
cache behavior even when the working set of the application
is very large. The features and functionality of these hard-
ware techniques are difficult to anticipate as vendors keep
these details closely guarded.

With these advances in microarchitectural design, simply
accessing a large amount of data does not necessarily cause
high pressure on cache and memory performance. For exam-
ple, access patterns that exhibit a large amount of spatial
or temporal locality can easily be prefetched into the ear-
lier and later levels of cache, and prefetch buffers can be
used. An important question that arises is, on sophisticated
modern architectures, whether an application’s sensitivity to
contention depends on the manner in which the contention
is synthesized.
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Figure 4: Slowdown caused by contention synthesis on Intel Core i7.
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Figure 5: Slowdown caused by contention synthesis on AMD Phenom X4.

5.2 Designing Contention Synthesis
To address this question, we constructed a four diverse

execution kernels that mimic common access patterns, and
investigated the contentious impact of these varying work-
loads. The first of these designs, Naive, simply accesses a
large array of memory (larger than the last level cache) per-
forming both loads and store at random memory locations.

The second design for the CSE, BST, consists of the ran-
dom construction and traversal of a binary search tree. Each
tree node consisted of an id and a payload, and a custom
traversal function is used. The payload consisted of a num-
ber of random bytes (128 in our design) to have the node
map into its own cache line. The contentious kernel of this
approach consisted of a specialized traversal function that
performs a random depth first search through the tree touch-
ing and changing the data alone the way.

The third design, Blockie, is a 3D data movement micro-
benchmark consisting of a number of large 3D arrays of
double precision values that represent solid virtual cubes.
The contentious kernel of this CSE is the transposition of
cells of each cube into the space of another cube. The cells
of one cube are continuously copied to another.

The forth design, Sledge, was designed by reverse engi-
neering and investigating lbm to learn its contentious core
nature. We call this design“The Sledgehammer.” This name
is motivated by the fact that the behavior of this design re-
sembles touching an element in a multidimensional array,
and modifying a number of sparsely surrounding elements.
The final version of this CSE first allocates two large arrays
and enters its contentious kernel which copies data back and

forth with this sledgehammer pattern.
More details and the complete algorithms for these four

kernels can be found in our prior work [16].

5.3 Evaluating Contention Synthesis Designs

5.3.1 Goals of Experiment

We seek to answer two questions with our evaluation of
contention synthesis designs. The first is whether there is a
drastic difference between the interactions of different appli-
cations to the different contention synthesis designs. We hy-
pothesize that contention is agnostic to the nature of mem-
ory access. We seek to evaluate this very question. The
other goal of this evaluation is to learn whether there exists a
synthesis engine that consistently generates more contention
than all others, and if so, identify it.

5.3.2 Experiments with 4 Designs

Figures 4 and 5 show the performance impact of co-running
each of the contention synthesis designs with each of the
SPEC2006 benchmarks (C/C++ only), run to completion
on ref inputs. Figure 4 shows the results when perform-
ing this co-location on Intel’s Core i7 Quad architecture,
and Figure 5 shows these results on AMD’s Phenom X4
Quad. The bars show the slowdown when co-located with
naive random access (naive), binary search tree (BST), the
lbm benchmark (LBM Core), the 3d block data movement
(Blockie), and our sledgehammer technique (Sledge), in that
order. The lbm benchmark is used as a baseline to compare
the synthetic engines. It is clear from the graphs that the
Naive and BST approaches produce the smallest amount of
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contention. However note that they do an adequate job of
indicating the applications that are most sensitive to cross-
core interference. The contention produced by Naive and
BST is low as there is computation performed between single
memory accesses. Blockie and Sledge touch large amounts
of data in a single pass and with less computation. Note
that our Blockie and Sledge techniques are more effective
than using the most contentious of the SPEC benchmarks.

Across the two architectures the general trend is similar,
although we do see some differences. We see that applica-
tions that tend to be sensitive to contention tend to be uni-
formly so across these two representative architectures. We
also see that the varying contention synthesis designs rank
similarly on both architectures. This general trend supports
our hypothesis that contention is agnostic across this class
of commodity multicore architectures.

Although the general trend is the same, there are some
clear differences. For example, the benchmark most sensi-
tive to cross-core interference on the two architectures dif-
fers. On Intel’s architecture mcf shows the most significant
degradation in performance, while on AMD’s architecture
lbm has the most significant degradation. These variations
are due to the idiosyncrasies of the microarchitectural de-
sign.

The key observation is the effectiveness of the contention
synthesis designs are mostly uniform across the different
benchmark workloads. This trend supports our hypothe-
sis that in addition to being generally agnostic across this
class of commodity multicore architectures, it is also agnos-
tic across the varying workloads and memory access patterns
present in SPEC.

For our CiPE framework we finalized the design of our
main CSE with a implementation based on Sledge as it most
vividly illustrates contention.

6. EVALUATION
In this section we first present the results of our CIS anal-

ysis. We then demonstrate the practicality and usefulness of
CiPE by using it to address two problems. The first prob-
lem is the selection of contention-conscious co-schedules for
a batch of jobs to dynamically minimize cross-core perfor-
mance interference and maximize overall throughput and
performance. The second problem is to locate regions of
code that, when executed dynamically, are highly sensi-
tive to cross-core performance interference. We address this
problem by designing a novel performance analysis and de-
bugging tool using CiPE.

6.1 Evaluating CIS Analysis
Figures 6 to 11 show phase-level CIS scores calculated

using our CiPE system for a representative selection of the
SPEC 2006 benchmarks. CIS scores are calculated using
samples collected at 1ms interval along the application’s
complete execution on ref input.

For each benchmark, the two lines in the graph indicate
the CIS scores on the two different architectures Intel Core
i7 and AMD Phenom X4. Both lines represent a complete
execution and is smoothed to 500 data points. We selected
representative key benchmarks from the SPEC2006 suite.
The higher the CIS score is, the more sensitive the appli-
cation is to cross-core interference. One important observa-
tion is that there are interesting clear phases in both some
of the highly sensitive benchmarks (milc, mcf, sphinx) and
in relatively insensitive benchmarks (bzip). There are also
benchmarks that do not exhibit clear phases including both
sensitive benchmarks (lbm) and insensitive benchmarks.

Profiling and discovering phase level characteristics of sen-
sitivity is valuable for dynamic co-scheduling, whether the
scheduling is done through a runtime system or OS. For
example, as shown in Figure 10, sphinx is highly sensitive
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Figure 12: CIS score and LLC misses compared to
slowdown when contending with LBM (Core i7)
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Figure 13: CIS score and LLC misses compared to
slowdown when contending with LBM (Phenom X4)

during the first half of the execution but later its sensitivity
drops. Thus an intelligent dynamic scheduler equipped with
phase information can foresee peaks of contention sensitivity
and schedule the application wisely according to the phase.
In addition, as shown later in this section, we have designed
a performance analysis and debugging tool that associates
these phases to source code regions. Using this, users can
identify code regions that are highly sensitive and optimize
accordingly. Figures 12 and 13 show the average CIS scores
calculated using Formula 5 for all C/C++ benchmarks in
SPEC2006, compared against the performance degradation
when each benchmark is co-running with lbm, on both Intel
Core i7 and AMD Phenom X4. We also compare our CIS ap-
proach with using average last level cache (LLC) miss rates,
as this approach is currently believed to be one of the best
known indicators of contention sensitivity [29, 13]. In Fig-
ures 12 and 13 we present the cache miss rate using a line
graph for each benchmark.

Our results show that generally, an application’s aver-
age CIS score has a strong correlation with its performance
degradation (e.g., a lower CIS scores indicate smaller degra-
dations and vice versa). Although in a few cases our CIS
scores is less representative of the actual degradation (sphinx,
xalan and astar), we see that in general our CIS scores
match the actual performance degradation much more closely
than cache miss rates. These three benchmarks have more
sporadic phases that we believe increased the inaccuracy on
its average. However, notice that even in these cases, the
CIS score significantly outperforms using last level cache
miss rates. In addition, studying the phase level CIS scores
for these types of applications would give more insight about
their dynamic sensitivity.

6.2 Contention Conscious Scheduling
When two applications are co-scheduled on current com-

modity multicore architectures in a contention oblivious fash-
ion, cross-core performance interference occurs, and ulti-
mately system utilization and throughput suffer. This prob-
lem is especially worrisome in the data-center and cluster
computing domains [3]. A CiPE based contention-conscious
scheduling approach is especially well suited in these do-
mains as the set of applications running on these systems are
known, and system application scheduling plans and policies
can be created offline. For example, Google, Microsoft, and
Yahoo have a known set of applications that run in their

data-centers, including Search, Maps, Mail, Video etc. An
understanding of each application’s sensitivity to cross-core
interference can prove critical to improving throughput, re-
sponsiveness and even power and energy.

For our experimental setup we use the following schedul-
ing model. We have a single batch of jobs to execute and two
processing cores available. Jobs are selected to run concur-
rently with another job on the neighboring core. If any core
becomes free, a job from the job queue is selected to run.
For our experiment our queue consists of the 19 SPEC2006
benchmarks (C/C++). Each benchmark is run to comple-
tion on their ref inputs. We have performed this experi-
mentation on both Intel’s Core i7 and AMD’s Phenom X4
multicore architectures.

As a baseline we show the effects of cache oblivious schedul-
ing. Our contention oblivious scheduling is a random sched-
ule where contentious applications are naively co-scheduled.
Our CiPE based contention conscious scheduling heuristi-
cally places applications with high sensitivity to cross-core
interference with applications with a low sensitivity. Every
time a job completes, the scheduler selects a job from the
queue with either the highest or lowest CIS score. If the
currently running job is sensitive, a job with the lowest CIS
score is selected. If the currently running job is insensitive
the job with the highest CIS score is selected.

Figures 14 and 15 show the results of our experimentation.
Figure 14 shows a significant reduction in the performance
degradation that occurs due to cross-core performance in-
terference. The bars show the execution time of each appli-
cation while being co-scheduled over running alone on both
the Core i7 and the Phenom X4. For each benchmark, the
first and second bars show performance degradation when
scheduled in a contention oblivious fashion and the third
and forth bars show the degradation when scheduled based
on CIS scores. As shown in the figure, for most benchmarks,
the performance degradation dropped significantly using our
CiPE-based approach.

Figure 15 summarizes the overall improvement in through-
put when using CiPE to select contention-conscious coloca-
tions. Using our approach we were able to improve the per-
formance of the contention sensitive SPEC2006 benchmarks
by 12%, on average and up to 24% in the case of mcf. The
remaining insensitive jobs only suffered a 1% performance
impact from being co-scheduled with sensitive jobs.
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CIS Score : 0 .21033
Rank : 1 Occupies : 68% F i l e : lbm . c Lines : 187 − 206
Rank : 2 Occupies : 32% F i l e : lbm . c Lines : 257 − 168

Figure 16: lbm Profile Sample

CIS Score : 0 .28453
Rank : 1 Occupies : 51% F i l e : s u3 p ro j . c Lines : 42 − 47
Rank : 2 Occupies : 49% F i l e : s m a mat . c Lines : 18 − 19

Figure 17: milc Profile Sample

6.3 Identifying Sensitive Code Regions
We also applied our CiPE framework to identify contentious

code regions. Software developers and system analyzers can
use this information for performance analysis, performance
debugging, and to detect the most contention sensitive ap-
plication phases and identify regions of source code respon-
sible for this contention. We have developed a prototype
performance debugger using CiPE.

Our performance debugger functions as a post processor
of the profiles generated by our CiPE profiling environment.
For each CIS sample generated by the CiPE profiling frame-
work while executing an application, a record of the num-
ber of instructions executed since the previous sample is
recorded. This record represents a region of executed in-
structions. This dynamic instruction trace can then easily
be linked back to source level code using the standard elf

debugging information.
Figures 16 and 17 show examples of the output of our

CiPE performance debugging tool. In each figure the de-
buggers output from a single CIS sample is shown. As our
debugger replays execution, a stream of these samples are
printed to the screen or to a log file. For each CIS sample,
our performance debugger points to the source-level basic
blocks which were responsible for that sample’s CIS score,
and their dynamic coverage relative to each other. The num-
ber of blocks shown is a parameter set by the user; two or
three is often covers more than 99% of the sample interval.
Figures 18, 19, and 20 show the corresponding SPEC2006
code snippets. As these figures show, for lbm and milc, the
most contentious regions of code are composed of dense ar-
ray and memory operations.

186 SWEEP START( 0 , 0 , 0 , 0 , 0 , SIZE Z )
187 i f ( TEST FLAG SWEEP( srcGrid , OBSTACLE )) {
188 DST C ( dstGrid ) = SRC C ( srcGrid ) ;
189 DST S ( dstGrid ) = SRC N ( srcGrid ) ;
190 DST N ( dstGrid ) = SRC S ( srcGrid ) ;
191 DST W ( dstGrid ) = SRC E ( srcGrid ) ;
192 DST E ( dstGrid ) = SRC W ( srcGrid ) ;
193 DST B ( dstGrid ) = SRC T ( srcGrid ) ;
194 DST T ( dstGrid ) = SRC B ( srcGrid ) ;
195 DST SW( dstGrid ) = SRC NE( srcGrid ) ;
196 DST SE( dstGrid ) = SRC NW( srcGrid ) ;
197 DST NW( dstGrid ) = SRC SE( srcGrid ) ;
198 DST NE( dstGrid ) = SRC SW( srcGrid ) ;
199 DST SB( dstGrid ) = SRC NT( srcGrid ) ;
200 DST ST( dstGrid ) = SRC NB( srcGrid ) ;
201 DST NB( dstGrid ) = SRC ST( srcGrid ) ;
202 DST NT( dstGrid ) = SRC SB( srcGrid ) ;
203 DST WB( dstGrid ) = SRC ET( srcGrid ) ;
204 DST WT( dstGrid ) = SRC EB( srcGrid ) ;
205 DST EB( dstGrid ) = SRC WT( srcGrid ) ;
206 DST ET( dstGrid ) = SRC WB( srcGrid ) ;
207 continue ;
208 }

Figure 18: lbm.c

38 void s u 3 p r o j e c t o r ( su3 vec to r ∗a ,
su3 vec to r ∗b , su3 matr ix ∗c ){

39 register int i , j ;
40 register double tmp , tmp2 ;
41 for ( i =0; i <3; i++)for ( j =0; j <3; j++){
42 tmp2 = a−>c [ i ] . r e a l ∗ b−>c [ j ] . r e a l ;
43 tmp = a−>c [ i ] . imag ∗ b−>c [ j ] . imag ;
44 c−>e [ i ] [ j ] . r e a l = tmp + tmp2 ;
45 tmp2 = a−>c [ i ] . r e a l ∗ b−>c [ j ] . imag ;
46 tmp = a−>c [ i ] . imag ∗ b−>c [ j ] . r e a l ;
47 c−>e [ i ] [ j ] . imag = tmp − tmp2 ;
48 }
49 }

Figure 19: su3 proj.c

16 register int i , j ;
17 for ( i =0; i <3; i++)for ( j =0; j <3; j++){
18 c−>e [ i ] [ j ] . r e a l=a−>e [ i ] [ j ] . r e a l+s∗b−>e [ i ] [ j ] . r e a l ;
19 c−>e [ i ] [ j ] . imag=a−>e [ i ] [ j ] . imag+s∗b−>e [ i ] [ j ] . imag ;
20 }

Figure 20: s m a mat.c

Our general CIS Analysis can be used for other perfor-
mance debugger designs. For example, instead of replay-
ing CiPE profiles, branch information can be efficiently ex-
tracted online using structures such as Intel’s last branch
record (LBR), and then linked back to the source level dur-
ing the CiPE profile generation. Enabling these such modifi-
cations are matters of engineering. However, once the CiPE



profiles are gathered, our post processing replay debugger
provides the same functionality and suffers only 20% over-
head over native execution.

7. RELATED WORK
In this paper we present a profiling and characterization

framework for program sensitivity to cross-core interference
on modern CMP architecture. Related to our work is a
cache monitoring system for shared caches [28], which pro-
poses novel hardware designs to facilitate better understand-
ing of how applications are interacting and contending when
running together. Similar to our work, the system is then
used for profiling and program behavior characterization.
However, in contrast to our methodology, this work requires
hardware extensions and thus is evaluated using simulations.
Our methodology and framework is applicable to current
commodity multicore architectures. In addition, our frame-
work is not limited to cache contention but any contention
in the memory system that would impact performance, and
can be produced by our CSE. For our co-scheduling scheme,
the works by Knauerhase et al. [13] and Zhuravlev et al. [29]
are related. These works both use last level cache misses to
perform contention-conscious scheduling. They exploit the
observation that a program’s cache miss behavior tends to
be good indicators of contentiousness to dynamically pair
jobs with heavy cache usage with jobs with lower cache us-
age to reduce contention. Although CiPE requires a profil-
ing phase, using CIS score has shown to be a be a stronger
indicator than last level cache misses. Our system is not a re-
placement of these prior works, but our profiling results are
complementary to dynamic scheduling because being able to
characterizing a program’s sensitivity and discovering phases
from profiling can help design more sophisticated and intel-
ligent dynamic schedulers.

In recent years, cache contention has received much re-
search attention. Most works focus on exploring the de-
sign space of cache and memory proposing novel hardware
solutions or managing policies to alleviate the contention
problem. Hardware techniques and related algorithms to
enable cache management such as cache partitioning and
memory scheduler are proposed [25, 12, 22, 19]. Other solu-
tions have been developed to guarantee fairness and QoS [17,
20, 10, 23]. Related to novel cache designs and architectural
support, analytical models to predict the impact of cache
sharing are also proposed by Chandra et al. [2]. In addi-
tion to new hardware cache management, other approaches
manage the shared cache through the OS [24, 4]. Instead
of novel hardware or software solution to managing shared
caches, our solution focuses on the other side of the prob-
lem, namely the application’s inherent sensitivity to inter-
ference on existing modern microarchitecture. Contention
conscious scheduling schemes that guarantee fairness and
increase QoS for co-running applications or multithreaded
application have been proposed [13, 7, 1, 18]. Fedorova et al.
used cache model prediction to enhance the OS scheduler to
provide performance isolation [7]. There are also theoretical
studies that investigate approximation algorithms to opti-
mally schedule co-running jobs on CMPs [11]. Much work
has been done for constructing general frameworks for mem-
ory profiling of applications [9, 21, 5], profiling techniques
and methods to use such profiling to improve performance
or help develop better compilers and optimizations [9, 26].

8. CONCLUSION
In this work, we present CiPE, a methodology and frame-

work for the measurement and characterization of an appli-
cation’s cross-core interference sensitivity on current multi-
core micro-architectures. This framework is composed of a
lightweight runtime environment on which a host application
runs, along with a carefully designed contention synthesis
engine that executes on a neighboring core. We have ex-
plored and evaluated four contention synthesis mechanisms
and presented a general characterization methodology for
application cross-core interference sensitivity (CIS Score).
We have presented the design and implementation of this
characterization methodology and framework, and demon-
strate its application to the SPEC2006 benchmark suite on
two real-world multicore architectures characterizing entire
applications, their individual phases, and also source level
code regions. We have also used our CiPE methodology
to perform contention conscious scheduling that minimizes
cross-core interference and significantly improves applica-
tion performance and throughput. Using our CiPE-based
scheduling, we improve the performance of contention sensi-
tive SPEC2006 benchmarks by 12% on average, and beyond
24% in the case of mcf and omnetpp.
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