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Modern Datacenter 

Host large-scale 
internet service

Expensive 

Datacenters: important computing domain
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Problem 
Lack of understanding of the datacenter workloads

Emerging workloads (different than standard benchmarks 
SPEC, PARSEC, etc)

How workloads interact with commodity multicore hardware 
(shared memory resources)

How workloads interact with each other on multicores

Lack of understanding leads to inefficient systems

 1 % performance improvement is huge at Google’s scale
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Memory Resource Sharing

Sharing: constructive and destructive

Thread-to-core mapping
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Goals

Characterize datacenter workloads 

Impact of memory resource sharing 

On-chip shared caches, memory bandwidth

Intelligent Thread-to-Core mapper:

Exploit workload characteristics

Arrive at efficient TTC mapping
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Background: Datacenter scheduling

Based on basic resource 
requirements. 

Applications 

may run alone 

may co-located with 
others
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topology oblivious
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Outline

Problem, Motivation and Background

Characterization

Intra-application Sharing 

Inter-application Sharing

Varying number of threads and architectures

Thread-to-Core Mapping

Heuristic-based mapping

Adaptive mapping
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Benchmarks

application description metric type

content-analyzer
content and semantic analysis, used to 
take key words or text documents and 
cluster them by their semantic meanings

throughput latency-
sensitive

bigtable storage software for massive amount of 
data

average 
latency

latency-
sensitive

websearch industry-strength internet search engine queries per 
second

latency-
sensitive

stitcher image processing and stitching, used for 
generating street views N/A batch

protobuf protocol buffer N/A batch
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Intra-application Sharing

Characterization Methodology

4 Threads, 3 Configurations
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Table 2: Sharing configurations for sets of 2 cores and sets of 4 cores

# Cores LLC(L2) FSB set of cores

2 Cores
Share: 2 cores - 1 L2 Share: 2 cores - 1 FSB {0,1}, {2,3}, {4,5} {6,7}
Distribute: 2 x (1 core - 1 L2) Share: 2 cores - 1 FSB {0,2}, {1,3}, {4,6}, {5,7}
Distribute: 2 x (1 core - 1 L2) Distribute: 2 x (1 core - 1 FSB) {0,4},{0,5},{0,6},{0,7},{1,4},{1,5}...

4 Cores
Share: 2 x (2 cores - 1 L2) Share: 4 cores - 1 FSB {0,1,2,3}, {4,5,6,7}
Share: 2 x (2 cores - 1 L2) Distribute: 2 x (2 cores - 1 FSB) {0,1,4,5}, {2,3,6,7}
Distribute: 4 x (1 core - 1 L2) Distribute: 2 x (2 cores - 1 FSB) {0,2,4,6}, {1,3,5,7}

batch. This work focuses on the performance of the key

latency sensitive applications.

3. INTRA-APPLICATION SHARING
In this section, we investigate the performance impact of

memory resource sharing for three key datacenter applica-

tions. Experiments and measurement are conducted using

different thread-to-core (TTC) mappings to study the im-

pact of intra-application sharing, defined as resource sharing

among the threads of an individual multi-threaded applica-

tion.

3.1 Experiment Methodology
The primary platform used in this paper is a dual socket

Intel Clovertown (Xeon E5345), shown in Figure 1. Each

socket has 4 cores. Each 2 cores on the same socket are

sharing a 4MB 16 way last level cache (L2). The platform is

running Linux kernel version 2.6.26 and a customized GCC

4.4.3. We also conducted experiments on Intel Westmere,

which is presented in Section 4.3.

[Benchmarks, inputs and metrics] Table 1 presents

a detailed description of the five datacenter applications we

use in our study. In the datacenter latency-sensitive applica-

tions are either run alone on a machine or co-located with a

batch application to improve machine utilization. Our study

mirrors this execution policy as we focus on the latency-

sensitive applications shown in Table 1. Also, instead of

measuring instruction per cycle (IPC) or execution time, we

use each application’s specified performance metric in this

study. Application specific metrics more accurately describe

performance than application agnostic metrics such as IPC

[3]. The performance metrics are also shown in Table 1.

The load for each application is real world query traces in

production datacenters. A load generator is set up to test

the peak capacity behavior of these applications. The per-

formance shown is applications’ stable behavior after the

initialization phase. Because our measurements use a large

amount of queries from production, these applications’ be-

haviors and characteristics are representative of real-world

execution.

In this section we conduct experiments when the applica-

tion is running alone to study the interaction within a multi-

threaded application with the underlying resource sharing

and the resulting performance variability. Three measure-

ments are conducted with three thread-to-core mappings:

{XXXX....}, {XX..XX..}, and {X.X.X.X.}. The performance

difference between mapping configurations demonstrates how

sharing LLC, sharing FSB, or sharing both can construc-

tively or destructively impact the performance of applica-

tions of interest. In each mapping, we use taskset to map

threads to cores. This allows us to study the resource shar-

ing outside of the default OS scheduler’s algorithm. This

methodology is shown to be valid for measuring the impact

of cache sharing by prior work [45]. Applications are pa-

rameterized to have a fixed load execute across 4 cores. All

experiments are run three times and the average measure-

ment is presented.

3.2 Measurement and Findings
Figure 6 demonstrates the performance variability due to

different TTC mappings for the latency sensitive applica-

tions presented in Table 1. For each applicaton, the x axis

shows the subset of cores the application is mapped to. The

y axis shows each application’s performance in each TTC

mapping scenario, normalized by its performance using the

mapping {X.X.X.X.}.
The results show that the performance impact of memory

resource sharing for these applications is significant, up to

22% for contentAnalyzer, 18% for bigtable and 8% for web-
Search. Secondly, each application prefers different shar-

ing configurations. Both contentAnalyzer and webSearch
prefer to run on separate LLCs and separate FSBs, the

mapping {X.X.X.X.} has 10% performance improvement for

webSearch and 20% for contentAnalyzer compared to map-

ping {XXXX....}, when all threads are on the same socket

sharing 2 LLCs and a single FSB. On the other hand, bigtable
achieves the best performance when running on the same

socket sharing 2 LLCs and a FSB, and the {X.X.X.X.} map-
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Table 2: Sharing configurations for sets of 2 cores and sets of 4 cores

# Cores LLC(L2) FSB set of cores

2 Cores
Share: 2 cores - 1 L2 Share: 2 cores - 1 FSB {0,1}, {2,3}, {4,5} {6,7}
Distribute: 2 x (1 core - 1 L2) Share: 2 cores - 1 FSB {0,2}, {1,3}, {4,6}, {5,7}
Distribute: 2 x (1 core - 1 L2) Distribute: 2 x (1 core - 1 FSB) {0,4},{0,5},{0,6},{0,7},{1,4},{1,5}...
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batch. This work focuses on the performance of the key

latency sensitive applications.

3. INTRA-APPLICATION SHARING
In this section, we investigate the performance impact of

memory resource sharing for three key datacenter applica-

tions. Experiments and measurement are conducted using

different thread-to-core (TTC) mappings to study the im-

pact of intra-application sharing, defined as resource sharing

among the threads of an individual multi-threaded applica-

tion.

3.1 Experiment Methodology
The primary platform used in this paper is a dual socket

Intel Clovertown (Xeon E5345), shown in Figure 1. Each

socket has 4 cores. Each 2 cores on the same socket are

sharing a 4MB 16 way last level cache (L2). The platform is

running Linux kernel version 2.6.26 and a customized GCC

4.4.3. We also conducted experiments on Intel Westmere,

which is presented in Section 4.3.

[Benchmarks, inputs and metrics] Table 1 presents

a detailed description of the five datacenter applications we

use in our study. In the datacenter latency-sensitive applica-

tions are either run alone on a machine or co-located with a

batch application to improve machine utilization. Our study

mirrors this execution policy as we focus on the latency-

sensitive applications shown in Table 1. Also, instead of

measuring instruction per cycle (IPC) or execution time, we

use each application’s specified performance metric in this

study. Application specific metrics more accurately describe

performance than application agnostic metrics such as IPC

[3]. The performance metrics are also shown in Table 1.

The load for each application is real world query traces in

production datacenters. A load generator is set up to test

the peak capacity behavior of these applications. The per-

formance shown is applications’ stable behavior after the

initialization phase. Because our measurements use a large

amount of queries from production, these applications’ be-

haviors and characteristics are representative of real-world

execution.

In this section we conduct experiments when the applica-

tion is running alone to study the interaction within a multi-
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sharing LLC, sharing FSB, or sharing both can construc-
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rameterized to have a fixed load execute across 4 cores. All

experiments are run three times and the average measure-
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3.2 Measurement and Findings
Figure 6 demonstrates the performance variability due to
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y axis shows each application’s performance in each TTC

mapping scenario, normalized by its performance using the

mapping {X.X.X.X.}.
The results show that the performance impact of memory
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batch. This work focuses on the performance of the key

latency sensitive applications.

3. INTRA-APPLICATION SHARING
In this section, we investigate the performance impact of

memory resource sharing for three key datacenter applica-

tions. Experiments and measurement are conducted using

different thread-to-core (TTC) mappings to study the im-

pact of intra-application sharing, defined as resource sharing

among the threads of an individual multi-threaded applica-

tion.

3.1 Experiment Methodology
The primary platform used in this paper is a dual socket

Intel Clovertown (Xeon E5345), shown in Figure 1. Each

socket has 4 cores. Each 2 cores on the same socket are

sharing a 4MB 16 way last level cache (L2). The platform is

running Linux kernel version 2.6.26 and a customized GCC

4.4.3. We also conducted experiments on Intel Westmere,

which is presented in Section 4.3.
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a detailed description of the five datacenter applications we

use in our study. In the datacenter latency-sensitive applica-

tions are either run alone on a machine or co-located with a

batch application to improve machine utilization. Our study

mirrors this execution policy as we focus on the latency-

sensitive applications shown in Table 1. Also, instead of

measuring instruction per cycle (IPC) or execution time, we

use each application’s specified performance metric in this

study. Application specific metrics more accurately describe

performance than application agnostic metrics such as IPC

[3]. The performance metrics are also shown in Table 1.

The load for each application is real world query traces in

production datacenters. A load generator is set up to test

the peak capacity behavior of these applications. The per-

formance shown is applications’ stable behavior after the

initialization phase. Because our measurements use a large

amount of queries from production, these applications’ be-

haviors and characteristics are representative of real-world
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In this section we conduct experiments when the applica-
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difference between mapping configurations demonstrates how
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ing outside of the default OS scheduler’s algorithm. This

methodology is shown to be valid for measuring the impact
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rameterized to have a fixed load execute across 4 cores. All

experiments are run three times and the average measure-
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3.2 Measurement and Findings
Figure 6 demonstrates the performance variability due to

different TTC mappings for the latency sensitive applica-

tions presented in Table 1. For each applicaton, the x axis

shows the subset of cores the application is mapped to. The

y axis shows each application’s performance in each TTC

mapping scenario, normalized by its performance using the
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The results show that the performance impact of memory

resource sharing for these applications is significant, up to

22% for contentAnalyzer, 18% for bigtable and 8% for web-
Search. Secondly, each application prefers different shar-

ing configurations. Both contentAnalyzer and webSearch
prefer to run on separate LLCs and separate FSBs, the

mapping {X.X.X.X.} has 10% performance improvement for

webSearch and 20% for contentAnalyzer compared to map-
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sharing 2 LLCs and a single FSB. On the other hand, bigtable
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batch. This work focuses on the performance of the key

latency sensitive applications.

3. INTRA-APPLICATION SHARING
In this section, we investigate the performance impact of

memory resource sharing for three key datacenter applica-

tions. Experiments and measurement are conducted using

different thread-to-core (TTC) mappings to study the im-

pact of intra-application sharing, defined as resource sharing

among the threads of an individual multi-threaded applica-

tion.

3.1 Experiment Methodology
The primary platform used in this paper is a dual socket

Intel Clovertown (Xeon E5345), shown in Figure 1. Each

socket has 4 cores. Each 2 cores on the same socket are

sharing a 4MB 16 way last level cache (L2). The platform is

running Linux kernel version 2.6.26 and a customized GCC

4.4.3. We also conducted experiments on Intel Westmere,

which is presented in Section 4.3.

[Benchmarks, inputs and metrics] Table 1 presents

a detailed description of the five datacenter applications we

use in our study. In the datacenter latency-sensitive applica-

tions are either run alone on a machine or co-located with a

batch application to improve machine utilization. Our study

mirrors this execution policy as we focus on the latency-

sensitive applications shown in Table 1. Also, instead of

measuring instruction per cycle (IPC) or execution time, we

use each application’s specified performance metric in this

study. Application specific metrics more accurately describe

performance than application agnostic metrics such as IPC

[3]. The performance metrics are also shown in Table 1.

The load for each application is real world query traces in

production datacenters. A load generator is set up to test

the peak capacity behavior of these applications. The per-

formance shown is applications’ stable behavior after the

initialization phase. Because our measurements use a large

amount of queries from production, these applications’ be-

haviors and characteristics are representative of real-world

execution.

In this section we conduct experiments when the applica-

tion is running alone to study the interaction within a multi-

threaded application with the underlying resource sharing

and the resulting performance variability. Three measure-

ments are conducted with three thread-to-core mappings:

{XXXX....}, {XX..XX..}, and {X.X.X.X.}. The performance

difference between mapping configurations demonstrates how

sharing LLC, sharing FSB, or sharing both can construc-

tively or destructively impact the performance of applica-

tions of interest. In each mapping, we use taskset to map

threads to cores. This allows us to study the resource shar-

ing outside of the default OS scheduler’s algorithm. This

methodology is shown to be valid for measuring the impact

of cache sharing by prior work [45]. Applications are pa-

rameterized to have a fixed load execute across 4 cores. All

experiments are run three times and the average measure-

ment is presented.

3.2 Measurement and Findings
Figure 6 demonstrates the performance variability due to

different TTC mappings for the latency sensitive applica-

tions presented in Table 1. For each applicaton, the x axis

shows the subset of cores the application is mapped to. The

y axis shows each application’s performance in each TTC

mapping scenario, normalized by its performance using the

mapping {X.X.X.X.}.
The results show that the performance impact of memory

resource sharing for these applications is significant, up to

22% for contentAnalyzer, 18% for bigtable and 8% for web-
Search. Secondly, each application prefers different shar-

ing configurations. Both contentAnalyzer and webSearch
prefer to run on separate LLCs and separate FSBs, the

mapping {X.X.X.X.} has 10% performance improvement for

webSearch and 20% for contentAnalyzer compared to map-

ping {XXXX....}, when all threads are on the same socket

sharing 2 LLCs and a single FSB. On the other hand, bigtable
achieves the best performance when running on the same

socket sharing 2 LLCs and a FSB, and the {X.X.X.X.} map-
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Table 2: Sharing configurations for sets of 2 cores and sets of 4 cores

# Cores LLC(L2) FSB set of cores

2 Cores
Share: 2 cores - 1 L2 Share: 2 cores - 1 FSB {0,1}, {2,3}, {4,5} {6,7}
Distribute: 2 x (1 core - 1 L2) Share: 2 cores - 1 FSB {0,2}, {1,3}, {4,6}, {5,7}
Distribute: 2 x (1 core - 1 L2) Distribute: 2 x (1 core - 1 FSB) {0,4},{0,5},{0,6},{0,7},{1,4},{1,5}...

4 Cores
Share: 2 x (2 cores - 1 L2) Share: 4 cores - 1 FSB {0,1,2,3}, {4,5,6,7}
Share: 2 x (2 cores - 1 L2) Distribute: 2 x (2 cores - 1 FSB) {0,1,4,5}, {2,3,6,7}
Distribute: 4 x (1 core - 1 L2) Distribute: 2 x (2 cores - 1 FSB) {0,2,4,6}, {1,3,5,7}

batch. This work focuses on the performance of the key

latency sensitive applications.

3. INTRA-APPLICATION SHARING
In this section, we investigate the performance impact of

memory resource sharing for three key datacenter applica-

tions. Experiments and measurement are conducted using

different thread-to-core (TTC) mappings to study the im-

pact of intra-application sharing, defined as resource sharing

among the threads of an individual multi-threaded applica-

tion.

3.1 Experiment Methodology
The primary platform used in this paper is a dual socket

Intel Clovertown (Xeon E5345), shown in Figure 1. Each

socket has 4 cores. Each 2 cores on the same socket are

sharing a 4MB 16 way last level cache (L2). The platform is

running Linux kernel version 2.6.26 and a customized GCC

4.4.3. We also conducted experiments on Intel Westmere,

which is presented in Section 4.3.

[Benchmarks, inputs and metrics] Table 1 presents

a detailed description of the five datacenter applications we

use in our study. In the datacenter latency-sensitive applica-

tions are either run alone on a machine or co-located with a

batch application to improve machine utilization. Our study

mirrors this execution policy as we focus on the latency-

sensitive applications shown in Table 1. Also, instead of

measuring instruction per cycle (IPC) or execution time, we

use each application’s specified performance metric in this

study. Application specific metrics more accurately describe

performance than application agnostic metrics such as IPC

[3]. The performance metrics are also shown in Table 1.

The load for each application is real world query traces in

production datacenters. A load generator is set up to test

the peak capacity behavior of these applications. The per-

formance shown is applications’ stable behavior after the

initialization phase. Because our measurements use a large

amount of queries from production, these applications’ be-

haviors and characteristics are representative of real-world

execution.

In this section we conduct experiments when the applica-

tion is running alone to study the interaction within a multi-

threaded application with the underlying resource sharing

and the resulting performance variability. Three measure-

ments are conducted with three thread-to-core mappings:

{XXXX....}, {XX..XX..}, and {X.X.X.X.}. The performance

difference between mapping configurations demonstrates how

sharing LLC, sharing FSB, or sharing both can construc-

tively or destructively impact the performance of applica-

tions of interest. In each mapping, we use taskset to map

threads to cores. This allows us to study the resource shar-

ing outside of the default OS scheduler’s algorithm. This

methodology is shown to be valid for measuring the impact

of cache sharing by prior work [45]. Applications are pa-

rameterized to have a fixed load execute across 4 cores. All

experiments are run three times and the average measure-

ment is presented.

3.2 Measurement and Findings
Figure 6 demonstrates the performance variability due to

different TTC mappings for the latency sensitive applica-

tions presented in Table 1. For each applicaton, the x axis

shows the subset of cores the application is mapped to. The

y axis shows each application’s performance in each TTC

mapping scenario, normalized by its performance using the

mapping {X.X.X.X.}.
The results show that the performance impact of memory

resource sharing for these applications is significant, up to

22% for contentAnalyzer, 18% for bigtable and 8% for web-
Search. Secondly, each application prefers different shar-

ing configurations. Both contentAnalyzer and webSearch
prefer to run on separate LLCs and separate FSBs, the

mapping {X.X.X.X.} has 10% performance improvement for

webSearch and 20% for contentAnalyzer compared to map-

ping {XXXX....}, when all threads are on the same socket

sharing 2 LLCs and a single FSB. On the other hand, bigtable
achieves the best performance when running on the same

socket sharing 2 LLCs and a FSB, and the {X.X.X.X.} map-
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Table 2: Sharing configurations for sets of 2 cores and sets of 4 cores

# Cores LLC(L2) FSB set of cores

2 Cores
Share: 2 cores - 1 L2 Share: 2 cores - 1 FSB {0,1}, {2,3}, {4,5} {6,7}
Distribute: 2 x (1 core - 1 L2) Share: 2 cores - 1 FSB {0,2}, {1,3}, {4,6}, {5,7}
Distribute: 2 x (1 core - 1 L2) Distribute: 2 x (1 core - 1 FSB) {0,4},{0,5},{0,6},{0,7},{1,4},{1,5}...

4 Cores
Share: 2 x (2 cores - 1 L2) Share: 4 cores - 1 FSB {0,1,2,3}, {4,5,6,7}
Share: 2 x (2 cores - 1 L2) Distribute: 2 x (2 cores - 1 FSB) {0,1,4,5}, {2,3,6,7}
Distribute: 4 x (1 core - 1 L2) Distribute: 2 x (2 cores - 1 FSB) {0,2,4,6}, {1,3,5,7}

batch. This work focuses on the performance of the key

latency sensitive applications.

3. INTRA-APPLICATION SHARING
In this section, we investigate the performance impact of

memory resource sharing for three key datacenter applica-

tions. Experiments and measurement are conducted using

different thread-to-core (TTC) mappings to study the im-

pact of intra-application sharing, defined as resource sharing

among the threads of an individual multi-threaded applica-

tion.

3.1 Experiment Methodology
The primary platform used in this paper is a dual socket

Intel Clovertown (Xeon E5345), shown in Figure 1. Each

socket has 4 cores. Each 2 cores on the same socket are

sharing a 4MB 16 way last level cache (L2). The platform is

running Linux kernel version 2.6.26 and a customized GCC

4.4.3. We also conducted experiments on Intel Westmere,

which is presented in Section 4.3.

[Benchmarks, inputs and metrics] Table 1 presents

a detailed description of the five datacenter applications we

use in our study. In the datacenter latency-sensitive applica-

tions are either run alone on a machine or co-located with a

batch application to improve machine utilization. Our study

mirrors this execution policy as we focus on the latency-

sensitive applications shown in Table 1. Also, instead of

measuring instruction per cycle (IPC) or execution time, we

use each application’s specified performance metric in this

study. Application specific metrics more accurately describe

performance than application agnostic metrics such as IPC

[3]. The performance metrics are also shown in Table 1.

The load for each application is real world query traces in

production datacenters. A load generator is set up to test

the peak capacity behavior of these applications. The per-

formance shown is applications’ stable behavior after the

initialization phase. Because our measurements use a large

amount of queries from production, these applications’ be-

haviors and characteristics are representative of real-world

execution.

In this section we conduct experiments when the applica-

tion is running alone to study the interaction within a multi-

threaded application with the underlying resource sharing

and the resulting performance variability. Three measure-

ments are conducted with three thread-to-core mappings:

{XXXX....}, {XX..XX..}, and {X.X.X.X.}. The performance

difference between mapping configurations demonstrates how

sharing LLC, sharing FSB, or sharing both can construc-

tively or destructively impact the performance of applica-

tions of interest. In each mapping, we use taskset to map

threads to cores. This allows us to study the resource shar-

ing outside of the default OS scheduler’s algorithm. This

methodology is shown to be valid for measuring the impact

of cache sharing by prior work [45]. Applications are pa-

rameterized to have a fixed load execute across 4 cores. All

experiments are run three times and the average measure-

ment is presented.

3.2 Measurement and Findings
Figure 6 demonstrates the performance variability due to

different TTC mappings for the latency sensitive applica-

tions presented in Table 1. For each applicaton, the x axis

shows the subset of cores the application is mapped to. The

y axis shows each application’s performance in each TTC

mapping scenario, normalized by its performance using the

mapping {X.X.X.X.}.
The results show that the performance impact of memory

resource sharing for these applications is significant, up to

22% for contentAnalyzer, 18% for bigtable and 8% for web-
Search. Secondly, each application prefers different shar-

ing configurations. Both contentAnalyzer and webSearch
prefer to run on separate LLCs and separate FSBs, the

mapping {X.X.X.X.} has 10% performance improvement for

webSearch and 20% for contentAnalyzer compared to map-

ping {XXXX....}, when all threads are on the same socket

sharing 2 LLCs and a single FSB. On the other hand, bigtable
achieves the best performance when running on the same

socket sharing 2 LLCs and a FSB, and the {X.X.X.X.} map-
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Table 2: Sharing configurations for sets of 2 cores and sets of 4 cores

# Cores LLC(L2) FSB set of cores

2 Cores
Share: 2 cores - 1 L2 Share: 2 cores - 1 FSB {0,1}, {2,3}, {4,5} {6,7}
Distribute: 2 x (1 core - 1 L2) Share: 2 cores - 1 FSB {0,2}, {1,3}, {4,6}, {5,7}
Distribute: 2 x (1 core - 1 L2) Distribute: 2 x (1 core - 1 FSB) {0,4},{0,5},{0,6},{0,7},{1,4},{1,5}...

4 Cores
Share: 2 x (2 cores - 1 L2) Share: 4 cores - 1 FSB {0,1,2,3}, {4,5,6,7}
Share: 2 x (2 cores - 1 L2) Distribute: 2 x (2 cores - 1 FSB) {0,1,4,5}, {2,3,6,7}
Distribute: 4 x (1 core - 1 L2) Distribute: 2 x (2 cores - 1 FSB) {0,2,4,6}, {1,3,5,7}

batch. This work focuses on the performance of the key

latency sensitive applications.

3. INTRA-APPLICATION SHARING
In this section, we investigate the performance impact of

memory resource sharing for three key datacenter applica-

tions. Experiments and measurement are conducted using

different thread-to-core (TTC) mappings to study the im-

pact of intra-application sharing, defined as resource sharing

among the threads of an individual multi-threaded applica-

tion.

3.1 Experiment Methodology
The primary platform used in this paper is a dual socket

Intel Clovertown (Xeon E5345), shown in Figure 1. Each

socket has 4 cores. Each 2 cores on the same socket are

sharing a 4MB 16 way last level cache (L2). The platform is

running Linux kernel version 2.6.26 and a customized GCC

4.4.3. We also conducted experiments on Intel Westmere,

which is presented in Section 4.3.

[Benchmarks, inputs and metrics] Table 1 presents

a detailed description of the five datacenter applications we

use in our study. In the datacenter latency-sensitive applica-

tions are either run alone on a machine or co-located with a

batch application to improve machine utilization. Our study

mirrors this execution policy as we focus on the latency-

sensitive applications shown in Table 1. Also, instead of

measuring instruction per cycle (IPC) or execution time, we

use each application’s specified performance metric in this

study. Application specific metrics more accurately describe

performance than application agnostic metrics such as IPC

[3]. The performance metrics are also shown in Table 1.

The load for each application is real world query traces in

production datacenters. A load generator is set up to test

the peak capacity behavior of these applications. The per-

formance shown is applications’ stable behavior after the

initialization phase. Because our measurements use a large

amount of queries from production, these applications’ be-

haviors and characteristics are representative of real-world

execution.

In this section we conduct experiments when the applica-

tion is running alone to study the interaction within a multi-

threaded application with the underlying resource sharing

and the resulting performance variability. Three measure-

ments are conducted with three thread-to-core mappings:

{XXXX....}, {XX..XX..}, and {X.X.X.X.}. The performance

difference between mapping configurations demonstrates how

sharing LLC, sharing FSB, or sharing both can construc-

tively or destructively impact the performance of applica-

tions of interest. In each mapping, we use taskset to map

threads to cores. This allows us to study the resource shar-

ing outside of the default OS scheduler’s algorithm. This

methodology is shown to be valid for measuring the impact

of cache sharing by prior work [45]. Applications are pa-

rameterized to have a fixed load execute across 4 cores. All

experiments are run three times and the average measure-

ment is presented.

3.2 Measurement and Findings
Figure 6 demonstrates the performance variability due to

different TTC mappings for the latency sensitive applica-

tions presented in Table 1. For each applicaton, the x axis

shows the subset of cores the application is mapped to. The

y axis shows each application’s performance in each TTC

mapping scenario, normalized by its performance using the

mapping {X.X.X.X.}.
The results show that the performance impact of memory

resource sharing for these applications is significant, up to

22% for contentAnalyzer, 18% for bigtable and 8% for web-
Search. Secondly, each application prefers different shar-

ing configurations. Both contentAnalyzer and webSearch
prefer to run on separate LLCs and separate FSBs, the

mapping {X.X.X.X.} has 10% performance improvement for

webSearch and 20% for contentAnalyzer compared to map-

ping {XXXX....}, when all threads are on the same socket

sharing 2 LLCs and a single FSB. On the other hand, bigtable
achieves the best performance when running on the same

socket sharing 2 LLCs and a FSB, and the {X.X.X.X.} map-
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Table 2: Sharing configurations for sets of 2 cores and sets of 4 cores

# Cores LLC(L2) FSB set of cores

2 Cores
Share: 2 cores - 1 L2 Share: 2 cores - 1 FSB {0,1}, {2,3}, {4,5} {6,7}
Distribute: 2 x (1 core - 1 L2) Share: 2 cores - 1 FSB {0,2}, {1,3}, {4,6}, {5,7}
Distribute: 2 x (1 core - 1 L2) Distribute: 2 x (1 core - 1 FSB) {0,4},{0,5},{0,6},{0,7},{1,4},{1,5}...

4 Cores
Share: 2 x (2 cores - 1 L2) Share: 4 cores - 1 FSB {0,1,2,3}, {4,5,6,7}
Share: 2 x (2 cores - 1 L2) Distribute: 2 x (2 cores - 1 FSB) {0,1,4,5}, {2,3,6,7}
Distribute: 4 x (1 core - 1 L2) Distribute: 2 x (2 cores - 1 FSB) {0,2,4,6}, {1,3,5,7}

batch. This work focuses on the performance of the key

latency sensitive applications.

3. INTRA-APPLICATION SHARING
In this section, we investigate the performance impact of

memory resource sharing for three key datacenter applica-

tions. Experiments and measurement are conducted using

different thread-to-core (TTC) mappings to study the im-

pact of intra-application sharing, defined as resource sharing

among the threads of an individual multi-threaded applica-

tion.

3.1 Experiment Methodology
The primary platform used in this paper is a dual socket

Intel Clovertown (Xeon E5345), shown in Figure 1. Each

socket has 4 cores. Each 2 cores on the same socket are

sharing a 4MB 16 way last level cache (L2). The platform is

running Linux kernel version 2.6.26 and a customized GCC

4.4.3. We also conducted experiments on Intel Westmere,

which is presented in Section 4.3.

[Benchmarks, inputs and metrics] Table 1 presents

a detailed description of the five datacenter applications we

use in our study. In the datacenter latency-sensitive applica-

tions are either run alone on a machine or co-located with a

batch application to improve machine utilization. Our study

mirrors this execution policy as we focus on the latency-

sensitive applications shown in Table 1. Also, instead of

measuring instruction per cycle (IPC) or execution time, we

use each application’s specified performance metric in this

study. Application specific metrics more accurately describe

performance than application agnostic metrics such as IPC

[3]. The performance metrics are also shown in Table 1.

The load for each application is real world query traces in

production datacenters. A load generator is set up to test

the peak capacity behavior of these applications. The per-

formance shown is applications’ stable behavior after the

initialization phase. Because our measurements use a large

amount of queries from production, these applications’ be-

haviors and characteristics are representative of real-world

execution.

In this section we conduct experiments when the applica-

tion is running alone to study the interaction within a multi-

threaded application with the underlying resource sharing

and the resulting performance variability. Three measure-

ments are conducted with three thread-to-core mappings:

{XXXX....}, {XX..XX..}, and {X.X.X.X.}. The performance

difference between mapping configurations demonstrates how

sharing LLC, sharing FSB, or sharing both can construc-

tively or destructively impact the performance of applica-

tions of interest. In each mapping, we use taskset to map

threads to cores. This allows us to study the resource shar-

ing outside of the default OS scheduler’s algorithm. This

methodology is shown to be valid for measuring the impact

of cache sharing by prior work [45]. Applications are pa-

rameterized to have a fixed load execute across 4 cores. All

experiments are run three times and the average measure-

ment is presented.

3.2 Measurement and Findings
Figure 6 demonstrates the performance variability due to

different TTC mappings for the latency sensitive applica-

tions presented in Table 1. For each applicaton, the x axis

shows the subset of cores the application is mapped to. The

y axis shows each application’s performance in each TTC

mapping scenario, normalized by its performance using the

mapping {X.X.X.X.}.
The results show that the performance impact of memory

resource sharing for these applications is significant, up to

22% for contentAnalyzer, 18% for bigtable and 8% for web-
Search. Secondly, each application prefers different shar-

ing configurations. Both contentAnalyzer and webSearch
prefer to run on separate LLCs and separate FSBs, the

mapping {X.X.X.X.} has 10% performance improvement for

webSearch and 20% for contentAnalyzer compared to map-

ping {XXXX....}, when all threads are on the same socket

sharing 2 LLCs and a single FSB. On the other hand, bigtable
achieves the best performance when running on the same

socket sharing 2 LLCs and a FSB, and the {X.X.X.X.} map-
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Table 2: Sharing configurations for sets of 2 cores and sets of 4 cores

# Cores LLC(L2) FSB set of cores

2 Cores
Share: 2 cores - 1 L2 Share: 2 cores - 1 FSB {0,1}, {2,3}, {4,5} {6,7}
Distribute: 2 x (1 core - 1 L2) Share: 2 cores - 1 FSB {0,2}, {1,3}, {4,6}, {5,7}
Distribute: 2 x (1 core - 1 L2) Distribute: 2 x (1 core - 1 FSB) {0,4},{0,5},{0,6},{0,7},{1,4},{1,5}...

4 Cores
Share: 2 x (2 cores - 1 L2) Share: 4 cores - 1 FSB {0,1,2,3}, {4,5,6,7}
Share: 2 x (2 cores - 1 L2) Distribute: 2 x (2 cores - 1 FSB) {0,1,4,5}, {2,3,6,7}
Distribute: 4 x (1 core - 1 L2) Distribute: 2 x (2 cores - 1 FSB) {0,2,4,6}, {1,3,5,7}

batch. This work focuses on the performance of the key

latency sensitive applications.

3. INTRA-APPLICATION SHARING
In this section, we investigate the performance impact of

memory resource sharing for three key datacenter applica-

tions. Experiments and measurement are conducted using

different thread-to-core (TTC) mappings to study the im-

pact of intra-application sharing, defined as resource sharing

among the threads of an individual multi-threaded applica-

tion.

3.1 Experiment Methodology
The primary platform used in this paper is a dual socket

Intel Clovertown (Xeon E5345), shown in Figure 1. Each

socket has 4 cores. Each 2 cores on the same socket are

sharing a 4MB 16 way last level cache (L2). The platform is

running Linux kernel version 2.6.26 and a customized GCC

4.4.3. We also conducted experiments on Intel Westmere,

which is presented in Section 4.3.

[Benchmarks, inputs and metrics] Table 1 presents

a detailed description of the five datacenter applications we

use in our study. In the datacenter latency-sensitive applica-

tions are either run alone on a machine or co-located with a

batch application to improve machine utilization. Our study

mirrors this execution policy as we focus on the latency-

sensitive applications shown in Table 1. Also, instead of

measuring instruction per cycle (IPC) or execution time, we

use each application’s specified performance metric in this

study. Application specific metrics more accurately describe

performance than application agnostic metrics such as IPC

[3]. The performance metrics are also shown in Table 1.

The load for each application is real world query traces in

production datacenters. A load generator is set up to test

the peak capacity behavior of these applications. The per-

formance shown is applications’ stable behavior after the

initialization phase. Because our measurements use a large

amount of queries from production, these applications’ be-

haviors and characteristics are representative of real-world

execution.

In this section we conduct experiments when the applica-

tion is running alone to study the interaction within a multi-

threaded application with the underlying resource sharing

and the resulting performance variability. Three measure-

ments are conducted with three thread-to-core mappings:

{XXXX....}, {XX..XX..}, and {X.X.X.X.}. The performance

difference between mapping configurations demonstrates how

sharing LLC, sharing FSB, or sharing both can construc-

tively or destructively impact the performance of applica-

tions of interest. In each mapping, we use taskset to map

threads to cores. This allows us to study the resource shar-

ing outside of the default OS scheduler’s algorithm. This

methodology is shown to be valid for measuring the impact

of cache sharing by prior work [45]. Applications are pa-

rameterized to have a fixed load execute across 4 cores. All

experiments are run three times and the average measure-

ment is presented.

3.2 Measurement and Findings
Figure 6 demonstrates the performance variability due to

different TTC mappings for the latency sensitive applica-

tions presented in Table 1. For each applicaton, the x axis

shows the subset of cores the application is mapped to. The

y axis shows each application’s performance in each TTC

mapping scenario, normalized by its performance using the

mapping {X.X.X.X.}.
The results show that the performance impact of memory

resource sharing for these applications is significant, up to

22% for contentAnalyzer, 18% for bigtable and 8% for web-
Search. Secondly, each application prefers different shar-

ing configurations. Both contentAnalyzer and webSearch
prefer to run on separate LLCs and separate FSBs, the

mapping {X.X.X.X.} has 10% performance improvement for

webSearch and 20% for contentAnalyzer compared to map-

ping {XXXX....}, when all threads are on the same socket

sharing 2 LLCs and a single FSB. On the other hand, bigtable
achieves the best performance when running on the same

socket sharing 2 LLCs and a FSB, and the {X.X.X.X.} map-
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Table 2: Sharing configurations for sets of 2 cores and sets of 4 cores

# Cores LLC(L2) FSB set of cores

2 Cores
Share: 2 cores - 1 L2 Share: 2 cores - 1 FSB {0,1}, {2,3}, {4,5} {6,7}
Distribute: 2 x (1 core - 1 L2) Share: 2 cores - 1 FSB {0,2}, {1,3}, {4,6}, {5,7}
Distribute: 2 x (1 core - 1 L2) Distribute: 2 x (1 core - 1 FSB) {0,4},{0,5},{0,6},{0,7},{1,4},{1,5}...

4 Cores
Share: 2 x (2 cores - 1 L2) Share: 4 cores - 1 FSB {0,1,2,3}, {4,5,6,7}
Share: 2 x (2 cores - 1 L2) Distribute: 2 x (2 cores - 1 FSB) {0,1,4,5}, {2,3,6,7}
Distribute: 4 x (1 core - 1 L2) Distribute: 2 x (2 cores - 1 FSB) {0,2,4,6}, {1,3,5,7}

batch. This work focuses on the performance of the key

latency sensitive applications.

3. INTRA-APPLICATION SHARING
In this section, we investigate the performance impact of

memory resource sharing for three key datacenter applica-

tions. Experiments and measurement are conducted using

different thread-to-core (TTC) mappings to study the im-

pact of intra-application sharing, defined as resource sharing

among the threads of an individual multi-threaded applica-

tion.

3.1 Experiment Methodology
The primary platform used in this paper is a dual socket

Intel Clovertown (Xeon E5345), shown in Figure 1. Each

socket has 4 cores. Each 2 cores on the same socket are

sharing a 4MB 16 way last level cache (L2). The platform is

running Linux kernel version 2.6.26 and a customized GCC

4.4.3. We also conducted experiments on Intel Westmere,

which is presented in Section 4.3.

[Benchmarks, inputs and metrics] Table 1 presents

a detailed description of the five datacenter applications we

use in our study. In the datacenter latency-sensitive applica-

tions are either run alone on a machine or co-located with a

batch application to improve machine utilization. Our study

mirrors this execution policy as we focus on the latency-

sensitive applications shown in Table 1. Also, instead of

measuring instruction per cycle (IPC) or execution time, we

use each application’s specified performance metric in this

study. Application specific metrics more accurately describe

performance than application agnostic metrics such as IPC

[3]. The performance metrics are also shown in Table 1.

The load for each application is real world query traces in

production datacenters. A load generator is set up to test

the peak capacity behavior of these applications. The per-

formance shown is applications’ stable behavior after the

initialization phase. Because our measurements use a large

amount of queries from production, these applications’ be-

haviors and characteristics are representative of real-world

execution.

In this section we conduct experiments when the applica-

tion is running alone to study the interaction within a multi-

threaded application with the underlying resource sharing

and the resulting performance variability. Three measure-

ments are conducted with three thread-to-core mappings:

{XXXX....}, {XX..XX..}, and {X.X.X.X.}. The performance

difference between mapping configurations demonstrates how

sharing LLC, sharing FSB, or sharing both can construc-

tively or destructively impact the performance of applica-

tions of interest. In each mapping, we use taskset to map

threads to cores. This allows us to study the resource shar-

ing outside of the default OS scheduler’s algorithm. This

methodology is shown to be valid for measuring the impact

of cache sharing by prior work [45]. Applications are pa-

rameterized to have a fixed load execute across 4 cores. All

experiments are run three times and the average measure-

ment is presented.

3.2 Measurement and Findings
Figure 6 demonstrates the performance variability due to

different TTC mappings for the latency sensitive applica-

tions presented in Table 1. For each applicaton, the x axis

shows the subset of cores the application is mapped to. The

y axis shows each application’s performance in each TTC

mapping scenario, normalized by its performance using the

mapping {X.X.X.X.}.
The results show that the performance impact of memory

resource sharing for these applications is significant, up to

22% for contentAnalyzer, 18% for bigtable and 8% for web-
Search. Secondly, each application prefers different shar-

ing configurations. Both contentAnalyzer and webSearch
prefer to run on separate LLCs and separate FSBs, the

mapping {X.X.X.X.} has 10% performance improvement for

webSearch and 20% for contentAnalyzer compared to map-

ping {XXXX....}, when all threads are on the same socket

sharing 2 LLCs and a single FSB. On the other hand, bigtable
achieves the best performance when running on the same

socket sharing 2 LLCs and a FSB, and the {X.X.X.X.} map-
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Table 2: Sharing configurations for sets of 2 cores and sets of 4 cores

# Cores LLC(L2) FSB set of cores

2 Cores
Share: 2 cores - 1 L2 Share: 2 cores - 1 FSB {0,1}, {2,3}, {4,5} {6,7}
Distribute: 2 x (1 core - 1 L2) Share: 2 cores - 1 FSB {0,2}, {1,3}, {4,6}, {5,7}
Distribute: 2 x (1 core - 1 L2) Distribute: 2 x (1 core - 1 FSB) {0,4},{0,5},{0,6},{0,7},{1,4},{1,5}...

4 Cores
Share: 2 x (2 cores - 1 L2) Share: 4 cores - 1 FSB {0,1,2,3}, {4,5,6,7}
Share: 2 x (2 cores - 1 L2) Distribute: 2 x (2 cores - 1 FSB) {0,1,4,5}, {2,3,6,7}
Distribute: 4 x (1 core - 1 L2) Distribute: 2 x (2 cores - 1 FSB) {0,2,4,6}, {1,3,5,7}

batch. This work focuses on the performance of the key

latency sensitive applications.

3. INTRA-APPLICATION SHARING
In this section, we investigate the performance impact of

memory resource sharing for three key datacenter applica-

tions. Experiments and measurement are conducted using

different thread-to-core (TTC) mappings to study the im-

pact of intra-application sharing, defined as resource sharing

among the threads of an individual multi-threaded applica-

tion.

3.1 Experiment Methodology
The primary platform used in this paper is a dual socket

Intel Clovertown (Xeon E5345), shown in Figure 1. Each

socket has 4 cores. Each 2 cores on the same socket are

sharing a 4MB 16 way last level cache (L2). The platform is

running Linux kernel version 2.6.26 and a customized GCC

4.4.3. We also conducted experiments on Intel Westmere,

which is presented in Section 4.3.

[Benchmarks, inputs and metrics] Table 1 presents

a detailed description of the five datacenter applications we

use in our study. In the datacenter latency-sensitive applica-

tions are either run alone on a machine or co-located with a

batch application to improve machine utilization. Our study

mirrors this execution policy as we focus on the latency-

sensitive applications shown in Table 1. Also, instead of

measuring instruction per cycle (IPC) or execution time, we

use each application’s specified performance metric in this

study. Application specific metrics more accurately describe

performance than application agnostic metrics such as IPC

[3]. The performance metrics are also shown in Table 1.

The load for each application is real world query traces in

production datacenters. A load generator is set up to test

the peak capacity behavior of these applications. The per-

formance shown is applications’ stable behavior after the

initialization phase. Because our measurements use a large

amount of queries from production, these applications’ be-

haviors and characteristics are representative of real-world

execution.

In this section we conduct experiments when the applica-

tion is running alone to study the interaction within a multi-

threaded application with the underlying resource sharing

and the resulting performance variability. Three measure-

ments are conducted with three thread-to-core mappings:

{XXXX....}, {XX..XX..}, and {X.X.X.X.}. The performance

difference between mapping configurations demonstrates how

sharing LLC, sharing FSB, or sharing both can construc-

tively or destructively impact the performance of applica-

tions of interest. In each mapping, we use taskset to map

threads to cores. This allows us to study the resource shar-

ing outside of the default OS scheduler’s algorithm. This

methodology is shown to be valid for measuring the impact

of cache sharing by prior work [45]. Applications are pa-

rameterized to have a fixed load execute across 4 cores. All

experiments are run three times and the average measure-

ment is presented.

3.2 Measurement and Findings
Figure 6 demonstrates the performance variability due to

different TTC mappings for the latency sensitive applica-

tions presented in Table 1. For each applicaton, the x axis

shows the subset of cores the application is mapped to. The

y axis shows each application’s performance in each TTC

mapping scenario, normalized by its performance using the

mapping {X.X.X.X.}.
The results show that the performance impact of memory

resource sharing for these applications is significant, up to

22% for contentAnalyzer, 18% for bigtable and 8% for web-
Search. Secondly, each application prefers different shar-

ing configurations. Both contentAnalyzer and webSearch
prefer to run on separate LLCs and separate FSBs, the

mapping {X.X.X.X.} has 10% performance improvement for

webSearch and 20% for contentAnalyzer compared to map-

ping {XXXX....}, when all threads are on the same socket

sharing 2 LLCs and a single FSB. On the other hand, bigtable
achieves the best performance when running on the same

socket sharing 2 LLCs and a FSB, and the {X.X.X.X.} map-
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Table 2: Sharing configurations for sets of 2 cores and sets of 4 cores

# Cores LLC(L2) FSB set of cores

2 Cores
Share: 2 cores - 1 L2 Share: 2 cores - 1 FSB {0,1}, {2,3}, {4,5} {6,7}
Distribute: 2 x (1 core - 1 L2) Share: 2 cores - 1 FSB {0,2}, {1,3}, {4,6}, {5,7}
Distribute: 2 x (1 core - 1 L2) Distribute: 2 x (1 core - 1 FSB) {0,4},{0,5},{0,6},{0,7},{1,4},{1,5}...

4 Cores
Share: 2 x (2 cores - 1 L2) Share: 4 cores - 1 FSB {0,1,2,3}, {4,5,6,7}
Share: 2 x (2 cores - 1 L2) Distribute: 2 x (2 cores - 1 FSB) {0,1,4,5}, {2,3,6,7}
Distribute: 4 x (1 core - 1 L2) Distribute: 2 x (2 cores - 1 FSB) {0,2,4,6}, {1,3,5,7}

batch. This work focuses on the performance of the key

latency sensitive applications.

3. INTRA-APPLICATION SHARING
In this section, we investigate the performance impact of

memory resource sharing for three key datacenter applica-

tions. Experiments and measurement are conducted using

different thread-to-core (TTC) mappings to study the im-

pact of intra-application sharing, defined as resource sharing

among the threads of an individual multi-threaded applica-

tion.

3.1 Experiment Methodology
The primary platform used in this paper is a dual socket

Intel Clovertown (Xeon E5345), shown in Figure 1. Each

socket has 4 cores. Each 2 cores on the same socket are

sharing a 4MB 16 way last level cache (L2). The platform is

running Linux kernel version 2.6.26 and a customized GCC

4.4.3. We also conducted experiments on Intel Westmere,

which is presented in Section 4.3.

[Benchmarks, inputs and metrics] Table 1 presents

a detailed description of the five datacenter applications we

use in our study. In the datacenter latency-sensitive applica-

tions are either run alone on a machine or co-located with a

batch application to improve machine utilization. Our study

mirrors this execution policy as we focus on the latency-

sensitive applications shown in Table 1. Also, instead of

measuring instruction per cycle (IPC) or execution time, we

use each application’s specified performance metric in this

study. Application specific metrics more accurately describe

performance than application agnostic metrics such as IPC

[3]. The performance metrics are also shown in Table 1.

The load for each application is real world query traces in

production datacenters. A load generator is set up to test

the peak capacity behavior of these applications. The per-

formance shown is applications’ stable behavior after the

initialization phase. Because our measurements use a large

amount of queries from production, these applications’ be-

haviors and characteristics are representative of real-world

execution.

In this section we conduct experiments when the applica-

tion is running alone to study the interaction within a multi-

threaded application with the underlying resource sharing

and the resulting performance variability. Three measure-

ments are conducted with three thread-to-core mappings:

{XXXX....}, {XX..XX..}, and {X.X.X.X.}. The performance

difference between mapping configurations demonstrates how

sharing LLC, sharing FSB, or sharing both can construc-

tively or destructively impact the performance of applica-

tions of interest. In each mapping, we use taskset to map

threads to cores. This allows us to study the resource shar-

ing outside of the default OS scheduler’s algorithm. This

methodology is shown to be valid for measuring the impact

of cache sharing by prior work [45]. Applications are pa-

rameterized to have a fixed load execute across 4 cores. All

experiments are run three times and the average measure-

ment is presented.

3.2 Measurement and Findings
Figure 6 demonstrates the performance variability due to

different TTC mappings for the latency sensitive applica-

tions presented in Table 1. For each applicaton, the x axis

shows the subset of cores the application is mapped to. The

y axis shows each application’s performance in each TTC

mapping scenario, normalized by its performance using the

mapping {X.X.X.X.}.
The results show that the performance impact of memory

resource sharing for these applications is significant, up to

22% for contentAnalyzer, 18% for bigtable and 8% for web-
Search. Secondly, each application prefers different shar-

ing configurations. Both contentAnalyzer and webSearch
prefer to run on separate LLCs and separate FSBs, the

mapping {X.X.X.X.} has 10% performance improvement for

webSearch and 20% for contentAnalyzer compared to map-

ping {XXXX....}, when all threads are on the same socket

sharing 2 LLCs and a single FSB. On the other hand, bigtable
achieves the best performance when running on the same

socket sharing 2 LLCs and a FSB, and the {X.X.X.X.} map-
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Table 2: Sharing configurations for sets of 2 cores and sets of 4 cores

# Cores LLC(L2) FSB set of cores

2 Cores
Share: 2 cores - 1 L2 Share: 2 cores - 1 FSB {0,1}, {2,3}, {4,5} {6,7}
Distribute: 2 x (1 core - 1 L2) Share: 2 cores - 1 FSB {0,2}, {1,3}, {4,6}, {5,7}
Distribute: 2 x (1 core - 1 L2) Distribute: 2 x (1 core - 1 FSB) {0,4},{0,5},{0,6},{0,7},{1,4},{1,5}...

4 Cores
Share: 2 x (2 cores - 1 L2) Share: 4 cores - 1 FSB {0,1,2,3}, {4,5,6,7}
Share: 2 x (2 cores - 1 L2) Distribute: 2 x (2 cores - 1 FSB) {0,1,4,5}, {2,3,6,7}
Distribute: 4 x (1 core - 1 L2) Distribute: 2 x (2 cores - 1 FSB) {0,2,4,6}, {1,3,5,7}

batch. This work focuses on the performance of the key

latency sensitive applications.

3. INTRA-APPLICATION SHARING
In this section, we investigate the performance impact of

memory resource sharing for three key datacenter applica-

tions. Experiments and measurement are conducted using

different thread-to-core (TTC) mappings to study the im-

pact of intra-application sharing, defined as resource sharing

among the threads of an individual multi-threaded applica-

tion.

3.1 Experiment Methodology
The primary platform used in this paper is a dual socket

Intel Clovertown (Xeon E5345), shown in Figure 1. Each

socket has 4 cores. Each 2 cores on the same socket are

sharing a 4MB 16 way last level cache (L2). The platform is

running Linux kernel version 2.6.26 and a customized GCC

4.4.3. We also conducted experiments on Intel Westmere,

which is presented in Section 4.3.

[Benchmarks, inputs and metrics] Table 1 presents

a detailed description of the five datacenter applications we

use in our study. In the datacenter latency-sensitive applica-

tions are either run alone on a machine or co-located with a

batch application to improve machine utilization. Our study

mirrors this execution policy as we focus on the latency-

sensitive applications shown in Table 1. Also, instead of

measuring instruction per cycle (IPC) or execution time, we

use each application’s specified performance metric in this

study. Application specific metrics more accurately describe

performance than application agnostic metrics such as IPC

[3]. The performance metrics are also shown in Table 1.

The load for each application is real world query traces in

production datacenters. A load generator is set up to test

the peak capacity behavior of these applications. The per-

formance shown is applications’ stable behavior after the

initialization phase. Because our measurements use a large

amount of queries from production, these applications’ be-

haviors and characteristics are representative of real-world

execution.

In this section we conduct experiments when the applica-

tion is running alone to study the interaction within a multi-

threaded application with the underlying resource sharing

and the resulting performance variability. Three measure-

ments are conducted with three thread-to-core mappings:

{XXXX....}, {XX..XX..}, and {X.X.X.X.}. The performance

difference between mapping configurations demonstrates how

sharing LLC, sharing FSB, or sharing both can construc-

tively or destructively impact the performance of applica-

tions of interest. In each mapping, we use taskset to map

threads to cores. This allows us to study the resource shar-

ing outside of the default OS scheduler’s algorithm. This

methodology is shown to be valid for measuring the impact

of cache sharing by prior work [45]. Applications are pa-

rameterized to have a fixed load execute across 4 cores. All

experiments are run three times and the average measure-

ment is presented.

3.2 Measurement and Findings
Figure 6 demonstrates the performance variability due to

different TTC mappings for the latency sensitive applica-

tions presented in Table 1. For each applicaton, the x axis

shows the subset of cores the application is mapped to. The

y axis shows each application’s performance in each TTC

mapping scenario, normalized by its performance using the

mapping {X.X.X.X.}.
The results show that the performance impact of memory

resource sharing for these applications is significant, up to

22% for contentAnalyzer, 18% for bigtable and 8% for web-
Search. Secondly, each application prefers different shar-

ing configurations. Both contentAnalyzer and webSearch
prefer to run on separate LLCs and separate FSBs, the

mapping {X.X.X.X.} has 10% performance improvement for

webSearch and 20% for contentAnalyzer compared to map-

ping {XXXX....}, when all threads are on the same socket

sharing 2 LLCs and a single FSB. On the other hand, bigtable
achieves the best performance when running on the same

socket sharing 2 LLCs and a FSB, and the {X.X.X.X.} map-
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Table 2: Sharing configurations for sets of 2 cores and sets of 4 cores

# Cores LLC(L2) FSB set of cores

2 Cores
Share: 2 cores - 1 L2 Share: 2 cores - 1 FSB {0,1}, {2,3}, {4,5} {6,7}
Distribute: 2 x (1 core - 1 L2) Share: 2 cores - 1 FSB {0,2}, {1,3}, {4,6}, {5,7}
Distribute: 2 x (1 core - 1 L2) Distribute: 2 x (1 core - 1 FSB) {0,4},{0,5},{0,6},{0,7},{1,4},{1,5}...

4 Cores
Share: 2 x (2 cores - 1 L2) Share: 4 cores - 1 FSB {0,1,2,3}, {4,5,6,7}
Share: 2 x (2 cores - 1 L2) Distribute: 2 x (2 cores - 1 FSB) {0,1,4,5}, {2,3,6,7}
Distribute: 4 x (1 core - 1 L2) Distribute: 2 x (2 cores - 1 FSB) {0,2,4,6}, {1,3,5,7}

batch. This work focuses on the performance of the key

latency sensitive applications.

3. INTRA-APPLICATION SHARING
In this section, we investigate the performance impact of

memory resource sharing for three key datacenter applica-

tions. Experiments and measurement are conducted using

different thread-to-core (TTC) mappings to study the im-

pact of intra-application sharing, defined as resource sharing

among the threads of an individual multi-threaded applica-

tion.

3.1 Experiment Methodology
The primary platform used in this paper is a dual socket

Intel Clovertown (Xeon E5345), shown in Figure 1. Each

socket has 4 cores. Each 2 cores on the same socket are

sharing a 4MB 16 way last level cache (L2). The platform is

running Linux kernel version 2.6.26 and a customized GCC

4.4.3. We also conducted experiments on Intel Westmere,

which is presented in Section 4.3.

[Benchmarks, inputs and metrics] Table 1 presents

a detailed description of the five datacenter applications we

use in our study. In the datacenter latency-sensitive applica-

tions are either run alone on a machine or co-located with a

batch application to improve machine utilization. Our study

mirrors this execution policy as we focus on the latency-

sensitive applications shown in Table 1. Also, instead of

measuring instruction per cycle (IPC) or execution time, we

use each application’s specified performance metric in this

study. Application specific metrics more accurately describe

performance than application agnostic metrics such as IPC

[3]. The performance metrics are also shown in Table 1.

The load for each application is real world query traces in

production datacenters. A load generator is set up to test

the peak capacity behavior of these applications. The per-

formance shown is applications’ stable behavior after the

initialization phase. Because our measurements use a large

amount of queries from production, these applications’ be-

haviors and characteristics are representative of real-world

execution.

In this section we conduct experiments when the applica-

tion is running alone to study the interaction within a multi-

threaded application with the underlying resource sharing

and the resulting performance variability. Three measure-

ments are conducted with three thread-to-core mappings:

{XXXX....}, {XX..XX..}, and {X.X.X.X.}. The performance

difference between mapping configurations demonstrates how

sharing LLC, sharing FSB, or sharing both can construc-

tively or destructively impact the performance of applica-

tions of interest. In each mapping, we use taskset to map

threads to cores. This allows us to study the resource shar-

ing outside of the default OS scheduler’s algorithm. This

methodology is shown to be valid for measuring the impact

of cache sharing by prior work [45]. Applications are pa-

rameterized to have a fixed load execute across 4 cores. All

experiments are run three times and the average measure-

ment is presented.

3.2 Measurement and Findings
Figure 6 demonstrates the performance variability due to

different TTC mappings for the latency sensitive applica-

tions presented in Table 1. For each applicaton, the x axis

shows the subset of cores the application is mapped to. The

y axis shows each application’s performance in each TTC

mapping scenario, normalized by its performance using the

mapping {X.X.X.X.}.
The results show that the performance impact of memory

resource sharing for these applications is significant, up to

22% for contentAnalyzer, 18% for bigtable and 8% for web-
Search. Secondly, each application prefers different shar-

ing configurations. Both contentAnalyzer and webSearch
prefer to run on separate LLCs and separate FSBs, the

mapping {X.X.X.X.} has 10% performance improvement for

webSearch and 20% for contentAnalyzer compared to map-

ping {XXXX....}, when all threads are on the same socket

sharing 2 LLCs and a single FSB. On the other hand, bigtable
achieves the best performance when running on the same

socket sharing 2 LLCs and a FSB, and the {X.X.X.X.} map-
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Table 2: Sharing configurations for sets of 2 cores and sets of 4 cores

# Cores LLC(L2) FSB set of cores

2 Cores
Share: 2 cores - 1 L2 Share: 2 cores - 1 FSB {0,1}, {2,3}, {4,5} {6,7}
Distribute: 2 x (1 core - 1 L2) Share: 2 cores - 1 FSB {0,2}, {1,3}, {4,6}, {5,7}
Distribute: 2 x (1 core - 1 L2) Distribute: 2 x (1 core - 1 FSB) {0,4},{0,5},{0,6},{0,7},{1,4},{1,5}...

4 Cores
Share: 2 x (2 cores - 1 L2) Share: 4 cores - 1 FSB {0,1,2,3}, {4,5,6,7}
Share: 2 x (2 cores - 1 L2) Distribute: 2 x (2 cores - 1 FSB) {0,1,4,5}, {2,3,6,7}
Distribute: 4 x (1 core - 1 L2) Distribute: 2 x (2 cores - 1 FSB) {0,2,4,6}, {1,3,5,7}

batch. This work focuses on the performance of the key

latency sensitive applications.

3. INTRA-APPLICATION SHARING
In this section, we investigate the performance impact of

memory resource sharing for three key datacenter applica-

tions. Experiments and measurement are conducted using

different thread-to-core (TTC) mappings to study the im-

pact of intra-application sharing, defined as resource sharing

among the threads of an individual multi-threaded applica-

tion.

3.1 Experiment Methodology
The primary platform used in this paper is a dual socket

Intel Clovertown (Xeon E5345), shown in Figure 1. Each

socket has 4 cores. Each 2 cores on the same socket are

sharing a 4MB 16 way last level cache (L2). The platform is

running Linux kernel version 2.6.26 and a customized GCC

4.4.3. We also conducted experiments on Intel Westmere,

which is presented in Section 4.3.

[Benchmarks, inputs and metrics] Table 1 presents

a detailed description of the five datacenter applications we

use in our study. In the datacenter latency-sensitive applica-

tions are either run alone on a machine or co-located with a

batch application to improve machine utilization. Our study

mirrors this execution policy as we focus on the latency-

sensitive applications shown in Table 1. Also, instead of

measuring instruction per cycle (IPC) or execution time, we

use each application’s specified performance metric in this

study. Application specific metrics more accurately describe

performance than application agnostic metrics such as IPC

[3]. The performance metrics are also shown in Table 1.

The load for each application is real world query traces in

production datacenters. A load generator is set up to test

the peak capacity behavior of these applications. The per-

formance shown is applications’ stable behavior after the

initialization phase. Because our measurements use a large

amount of queries from production, these applications’ be-

haviors and characteristics are representative of real-world

execution.

In this section we conduct experiments when the applica-

tion is running alone to study the interaction within a multi-

threaded application with the underlying resource sharing

and the resulting performance variability. Three measure-

ments are conducted with three thread-to-core mappings:

{XXXX....}, {XX..XX..}, and {X.X.X.X.}. The performance

difference between mapping configurations demonstrates how

sharing LLC, sharing FSB, or sharing both can construc-

tively or destructively impact the performance of applica-

tions of interest. In each mapping, we use taskset to map

threads to cores. This allows us to study the resource shar-

ing outside of the default OS scheduler’s algorithm. This

methodology is shown to be valid for measuring the impact

of cache sharing by prior work [45]. Applications are pa-

rameterized to have a fixed load execute across 4 cores. All

experiments are run three times and the average measure-

ment is presented.

3.2 Measurement and Findings
Figure 6 demonstrates the performance variability due to

different TTC mappings for the latency sensitive applica-

tions presented in Table 1. For each applicaton, the x axis

shows the subset of cores the application is mapped to. The

y axis shows each application’s performance in each TTC

mapping scenario, normalized by its performance using the

mapping {X.X.X.X.}.
The results show that the performance impact of memory

resource sharing for these applications is significant, up to

22% for contentAnalyzer, 18% for bigtable and 8% for web-
Search. Secondly, each application prefers different shar-

ing configurations. Both contentAnalyzer and webSearch
prefer to run on separate LLCs and separate FSBs, the

mapping {X.X.X.X.} has 10% performance improvement for

webSearch and 20% for contentAnalyzer compared to map-

ping {XXXX....}, when all threads are on the same socket

sharing 2 LLCs and a single FSB. On the other hand, bigtable
achieves the best performance when running on the same

socket sharing 2 LLCs and a FSB, and the {X.X.X.X.} map-
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Table 2: Sharing configurations for sets of 2 cores and sets of 4 cores

# Cores LLC(L2) FSB set of cores

2 Cores
Share: 2 cores - 1 L2 Share: 2 cores - 1 FSB {0,1}, {2,3}, {4,5} {6,7}
Distribute: 2 x (1 core - 1 L2) Share: 2 cores - 1 FSB {0,2}, {1,3}, {4,6}, {5,7}
Distribute: 2 x (1 core - 1 L2) Distribute: 2 x (1 core - 1 FSB) {0,4},{0,5},{0,6},{0,7},{1,4},{1,5}...

4 Cores
Share: 2 x (2 cores - 1 L2) Share: 4 cores - 1 FSB {0,1,2,3}, {4,5,6,7}
Share: 2 x (2 cores - 1 L2) Distribute: 2 x (2 cores - 1 FSB) {0,1,4,5}, {2,3,6,7}
Distribute: 4 x (1 core - 1 L2) Distribute: 2 x (2 cores - 1 FSB) {0,2,4,6}, {1,3,5,7}

batch. This work focuses on the performance of the key

latency sensitive applications.

3. INTRA-APPLICATION SHARING
In this section, we investigate the performance impact of

memory resource sharing for three key datacenter applica-

tions. Experiments and measurement are conducted using

different thread-to-core (TTC) mappings to study the im-

pact of intra-application sharing, defined as resource sharing

among the threads of an individual multi-threaded applica-

tion.

3.1 Experiment Methodology
The primary platform used in this paper is a dual socket

Intel Clovertown (Xeon E5345), shown in Figure 1. Each

socket has 4 cores. Each 2 cores on the same socket are

sharing a 4MB 16 way last level cache (L2). The platform is

running Linux kernel version 2.6.26 and a customized GCC

4.4.3. We also conducted experiments on Intel Westmere,

which is presented in Section 4.3.

[Benchmarks, inputs and metrics] Table 1 presents

a detailed description of the five datacenter applications we

use in our study. In the datacenter latency-sensitive applica-

tions are either run alone on a machine or co-located with a

batch application to improve machine utilization. Our study

mirrors this execution policy as we focus on the latency-

sensitive applications shown in Table 1. Also, instead of

measuring instruction per cycle (IPC) or execution time, we

use each application’s specified performance metric in this

study. Application specific metrics more accurately describe

performance than application agnostic metrics such as IPC

[3]. The performance metrics are also shown in Table 1.

The load for each application is real world query traces in

production datacenters. A load generator is set up to test

the peak capacity behavior of these applications. The per-

formance shown is applications’ stable behavior after the

initialization phase. Because our measurements use a large

amount of queries from production, these applications’ be-

haviors and characteristics are representative of real-world

execution.

In this section we conduct experiments when the applica-

tion is running alone to study the interaction within a multi-

threaded application with the underlying resource sharing

and the resulting performance variability. Three measure-

ments are conducted with three thread-to-core mappings:

{XXXX....}, {XX..XX..}, and {X.X.X.X.}. The performance

difference between mapping configurations demonstrates how

sharing LLC, sharing FSB, or sharing both can construc-

tively or destructively impact the performance of applica-

tions of interest. In each mapping, we use taskset to map

threads to cores. This allows us to study the resource shar-

ing outside of the default OS scheduler’s algorithm. This

methodology is shown to be valid for measuring the impact

of cache sharing by prior work [45]. Applications are pa-

rameterized to have a fixed load execute across 4 cores. All

experiments are run three times and the average measure-

ment is presented.

3.2 Measurement and Findings
Figure 6 demonstrates the performance variability due to

different TTC mappings for the latency sensitive applica-

tions presented in Table 1. For each applicaton, the x axis

shows the subset of cores the application is mapped to. The

y axis shows each application’s performance in each TTC

mapping scenario, normalized by its performance using the

mapping {X.X.X.X.}.
The results show that the performance impact of memory

resource sharing for these applications is significant, up to

22% for contentAnalyzer, 18% for bigtable and 8% for web-
Search. Secondly, each application prefers different shar-

ing configurations. Both contentAnalyzer and webSearch
prefer to run on separate LLCs and separate FSBs, the

mapping {X.X.X.X.} has 10% performance improvement for

webSearch and 20% for contentAnalyzer compared to map-

ping {XXXX....}, when all threads are on the same socket

sharing 2 LLCs and a single FSB. On the other hand, bigtable
achieves the best performance when running on the same

socket sharing 2 LLCs and a FSB, and the {X.X.X.X.} map-
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Table 2: Sharing configurations for sets of 2 cores and sets of 4 cores

# Cores LLC(L2) FSB set of cores

2 Cores
Share: 2 cores - 1 L2 Share: 2 cores - 1 FSB {0,1}, {2,3}, {4,5} {6,7}
Distribute: 2 x (1 core - 1 L2) Share: 2 cores - 1 FSB {0,2}, {1,3}, {4,6}, {5,7}
Distribute: 2 x (1 core - 1 L2) Distribute: 2 x (1 core - 1 FSB) {0,4},{0,5},{0,6},{0,7},{1,4},{1,5}...

4 Cores
Share: 2 x (2 cores - 1 L2) Share: 4 cores - 1 FSB {0,1,2,3}, {4,5,6,7}
Share: 2 x (2 cores - 1 L2) Distribute: 2 x (2 cores - 1 FSB) {0,1,4,5}, {2,3,6,7}
Distribute: 4 x (1 core - 1 L2) Distribute: 2 x (2 cores - 1 FSB) {0,2,4,6}, {1,3,5,7}

batch. This work focuses on the performance of the key

latency sensitive applications.

3. INTRA-APPLICATION SHARING
In this section, we investigate the performance impact of

memory resource sharing for three key datacenter applica-

tions. Experiments and measurement are conducted using

different thread-to-core (TTC) mappings to study the im-

pact of intra-application sharing, defined as resource sharing

among the threads of an individual multi-threaded applica-

tion.

3.1 Experiment Methodology
The primary platform used in this paper is a dual socket

Intel Clovertown (Xeon E5345), shown in Figure 1. Each

socket has 4 cores. Each 2 cores on the same socket are

sharing a 4MB 16 way last level cache (L2). The platform is

running Linux kernel version 2.6.26 and a customized GCC

4.4.3. We also conducted experiments on Intel Westmere,

which is presented in Section 4.3.

[Benchmarks, inputs and metrics] Table 1 presents

a detailed description of the five datacenter applications we

use in our study. In the datacenter latency-sensitive applica-

tions are either run alone on a machine or co-located with a

batch application to improve machine utilization. Our study

mirrors this execution policy as we focus on the latency-

sensitive applications shown in Table 1. Also, instead of

measuring instruction per cycle (IPC) or execution time, we

use each application’s specified performance metric in this

study. Application specific metrics more accurately describe

performance than application agnostic metrics such as IPC

[3]. The performance metrics are also shown in Table 1.

The load for each application is real world query traces in

production datacenters. A load generator is set up to test

the peak capacity behavior of these applications. The per-

formance shown is applications’ stable behavior after the

initialization phase. Because our measurements use a large

amount of queries from production, these applications’ be-

haviors and characteristics are representative of real-world

execution.

In this section we conduct experiments when the applica-

tion is running alone to study the interaction within a multi-

threaded application with the underlying resource sharing

and the resulting performance variability. Three measure-

ments are conducted with three thread-to-core mappings:

{XXXX....}, {XX..XX..}, and {X.X.X.X.}. The performance

difference between mapping configurations demonstrates how

sharing LLC, sharing FSB, or sharing both can construc-

tively or destructively impact the performance of applica-

tions of interest. In each mapping, we use taskset to map

threads to cores. This allows us to study the resource shar-

ing outside of the default OS scheduler’s algorithm. This

methodology is shown to be valid for measuring the impact

of cache sharing by prior work [45]. Applications are pa-

rameterized to have a fixed load execute across 4 cores. All

experiments are run three times and the average measure-

ment is presented.

3.2 Measurement and Findings
Figure 6 demonstrates the performance variability due to

different TTC mappings for the latency sensitive applica-

tions presented in Table 1. For each applicaton, the x axis

shows the subset of cores the application is mapped to. The

y axis shows each application’s performance in each TTC

mapping scenario, normalized by its performance using the

mapping {X.X.X.X.}.
The results show that the performance impact of memory

resource sharing for these applications is significant, up to

22% for contentAnalyzer, 18% for bigtable and 8% for web-
Search. Secondly, each application prefers different shar-

ing configurations. Both contentAnalyzer and webSearch
prefer to run on separate LLCs and separate FSBs, the

mapping {X.X.X.X.} has 10% performance improvement for

webSearch and 20% for contentAnalyzer compared to map-

ping {XXXX....}, when all threads are on the same socket

sharing 2 LLCs and a single FSB. On the other hand, bigtable
achieves the best performance when running on the same

socket sharing 2 LLCs and a FSB, and the {X.X.X.X.} map-
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Table 2: Sharing configurations for sets of 2 cores and sets of 4 cores

# Cores LLC(L2) FSB set of cores

2 Cores
Share: 2 cores - 1 L2 Share: 2 cores - 1 FSB {0,1}, {2,3}, {4,5} {6,7}
Distribute: 2 x (1 core - 1 L2) Share: 2 cores - 1 FSB {0,2}, {1,3}, {4,6}, {5,7}
Distribute: 2 x (1 core - 1 L2) Distribute: 2 x (1 core - 1 FSB) {0,4},{0,5},{0,6},{0,7},{1,4},{1,5}...

4 Cores
Share: 2 x (2 cores - 1 L2) Share: 4 cores - 1 FSB {0,1,2,3}, {4,5,6,7}
Share: 2 x (2 cores - 1 L2) Distribute: 2 x (2 cores - 1 FSB) {0,1,4,5}, {2,3,6,7}
Distribute: 4 x (1 core - 1 L2) Distribute: 2 x (2 cores - 1 FSB) {0,2,4,6}, {1,3,5,7}

batch. This work focuses on the performance of the key

latency sensitive applications.

3. INTRA-APPLICATION SHARING
In this section, we investigate the performance impact of

memory resource sharing for three key datacenter applica-

tions. Experiments and measurement are conducted using

different thread-to-core (TTC) mappings to study the im-

pact of intra-application sharing, defined as resource sharing

among the threads of an individual multi-threaded applica-

tion.

3.1 Experiment Methodology
The primary platform used in this paper is a dual socket

Intel Clovertown (Xeon E5345), shown in Figure 1. Each

socket has 4 cores. Each 2 cores on the same socket are

sharing a 4MB 16 way last level cache (L2). The platform is

running Linux kernel version 2.6.26 and a customized GCC

4.4.3. We also conducted experiments on Intel Westmere,

which is presented in Section 4.3.

[Benchmarks, inputs and metrics] Table 1 presents

a detailed description of the five datacenter applications we

use in our study. In the datacenter latency-sensitive applica-

tions are either run alone on a machine or co-located with a

batch application to improve machine utilization. Our study

mirrors this execution policy as we focus on the latency-

sensitive applications shown in Table 1. Also, instead of

measuring instruction per cycle (IPC) or execution time, we

use each application’s specified performance metric in this

study. Application specific metrics more accurately describe

performance than application agnostic metrics such as IPC

[3]. The performance metrics are also shown in Table 1.

The load for each application is real world query traces in

production datacenters. A load generator is set up to test

the peak capacity behavior of these applications. The per-

formance shown is applications’ stable behavior after the

initialization phase. Because our measurements use a large

amount of queries from production, these applications’ be-

haviors and characteristics are representative of real-world

execution.

In this section we conduct experiments when the applica-

tion is running alone to study the interaction within a multi-

threaded application with the underlying resource sharing

and the resulting performance variability. Three measure-

ments are conducted with three thread-to-core mappings:

{XXXX....}, {XX..XX..}, and {X.X.X.X.}. The performance

difference between mapping configurations demonstrates how

sharing LLC, sharing FSB, or sharing both can construc-

tively or destructively impact the performance of applica-

tions of interest. In each mapping, we use taskset to map

threads to cores. This allows us to study the resource shar-

ing outside of the default OS scheduler’s algorithm. This

methodology is shown to be valid for measuring the impact

of cache sharing by prior work [45]. Applications are pa-

rameterized to have a fixed load execute across 4 cores. All

experiments are run three times and the average measure-

ment is presented.

3.2 Measurement and Findings
Figure 6 demonstrates the performance variability due to

different TTC mappings for the latency sensitive applica-

tions presented in Table 1. For each applicaton, the x axis

shows the subset of cores the application is mapped to. The

y axis shows each application’s performance in each TTC

mapping scenario, normalized by its performance using the

mapping {X.X.X.X.}.
The results show that the performance impact of memory

resource sharing for these applications is significant, up to

22% for contentAnalyzer, 18% for bigtable and 8% for web-
Search. Secondly, each application prefers different shar-

ing configurations. Both contentAnalyzer and webSearch
prefer to run on separate LLCs and separate FSBs, the

mapping {X.X.X.X.} has 10% performance improvement for

webSearch and 20% for contentAnalyzer compared to map-

ping {XXXX....}, when all threads are on the same socket

sharing 2 LLCs and a single FSB. On the other hand, bigtable
achieves the best performance when running on the same

socket sharing 2 LLCs and a FSB, and the {X.X.X.X.} map-
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Table 2: Sharing configurations for sets of 2 cores and sets of 4 cores

# Cores LLC(L2) FSB set of cores

2 Cores
Share: 2 cores - 1 L2 Share: 2 cores - 1 FSB {0,1}, {2,3}, {4,5} {6,7}
Distribute: 2 x (1 core - 1 L2) Share: 2 cores - 1 FSB {0,2}, {1,3}, {4,6}, {5,7}
Distribute: 2 x (1 core - 1 L2) Distribute: 2 x (1 core - 1 FSB) {0,4},{0,5},{0,6},{0,7},{1,4},{1,5}...

4 Cores
Share: 2 x (2 cores - 1 L2) Share: 4 cores - 1 FSB {0,1,2,3}, {4,5,6,7}
Share: 2 x (2 cores - 1 L2) Distribute: 2 x (2 cores - 1 FSB) {0,1,4,5}, {2,3,6,7}
Distribute: 4 x (1 core - 1 L2) Distribute: 2 x (2 cores - 1 FSB) {0,2,4,6}, {1,3,5,7}
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Figure 6: Performance of different thread-to-core
mappings when each application is running alone.
The higher the bars, the better performance. The
performance variability is up to 20% for each appli-
cation, indicating that the memory resource sharing
has a significant performance impact on these appli-
cations. Also, notice that bigtable is benefiting from
sharing last level cache; while contentAnalyzer and
webSearch suffer from the contention for memory
resource among sibling threads.

3. INTRA-APPLICATION SHARING
In this section, we investigate the performance impact of

memory resource sharing for three key datacenter applica-
tions. Experiments and measurement are conducted using
different thread-to-core (TTC) mappings to study the im-
pact of intra-application sharing, defined as resource sharing
among the threads of an individual multi-threaded applica-
tion.

3.1 Experiment Methodology
The primary platform used in this paper is a dual socket

Intel Clovertown (Xeon E5345), shown in Figure 1. Each
socket has 4 cores. Each 2 cores on the same socket are
sharing a 4MB 16 way last level cache (L2). The platform is
running Linux kernel version 2.6.26 and a customized GCC
4.4.3. We also conducted experiments on the Intel West-
mere, which is presented in Section 4.3.

Table 1 presents a detailed description of the five data-
center applications we used in our study. In the datacen-
ter latency-sensitive applications are either run alone on a
machine or co-located with a batch application to improve
machine utilization. Our study mirrors this execution pol-
icy as we focus on the latency-sensitive applications shown
in Table 1. Also, instead of measuring instruction per cycle
(IPC) or execution time, we use each application’s specified
performance metric in this study. Application-specific met-
rics more accurately describe performance than application
agnostic metrics such as IPC [3]. The performance metrics
are also shown in Table 1. The load for each application is
real world query traces in production datacenters. A load
generator is set up to test the peak capacity behavior of
these applications. The performance shown is applications’
stable behavior after the initialization phase. Because our
measurements use a large amount of queries from produc-
tion, these applications’ behaviors and characteristics are
representative of real-world execution.

In this section we describe experiments when the applica-
tion is running alone to study the interaction within a multi-
threaded application with the underlying resource sharing
and the resulting performance variability. Three measure-
ments are conducted with three thread-to-core mappings:
{XXXX....}, {XX..XX..}, and {X.X.X.X.}. The performance
difference between mapping configurations demonstrates how
sharing LLC, sharing FSB, or sharing both can construc-
tively or destructively impact the performance of applica-
tions of interest. In each mapping, we use taskset to map
threads to cores. This allows us to study the resource shar-
ing outside of the default OS scheduler’s algorithm. This
methodology is shown to be valid for measuring the impact
of cache sharing by prior work [45]. Applications are pa-
rameterized to have a fixed load execute across 4 cores. All
experiments were run three times and the average measure-
ment is presented.

3.2 Measurement and Findings
Figure 6 demonstrates the performance variability due to

different TTC mappings for the latency sensitive applica-
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Table 2: Sharing configurations for sets of 2 cores and sets of 4 cores

# Cores LLC(L2) FSB set of cores

2 Cores
Share: 2 cores - 1 L2 Share: 2 cores - 1 FSB {0,1}, {2,3}, {4,5} {6,7}
Distribute: 2 x (1 core - 1 L2) Share: 2 cores - 1 FSB {0,2}, {1,3}, {4,6}, {5,7}
Distribute: 2 x (1 core - 1 L2) Distribute: 2 x (1 core - 1 FSB) {0,4},{0,5},{0,6},{0,7},{1,4},{1,5}...
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Figure 6: Performance of different thread-to-core
mappings when each application is running alone.
The higher the bars, the better performance. The
performance variability is up to 20% for each appli-
cation, indicating that the memory resource sharing
has a significant performance impact on these appli-
cations. Also, notice that bigtable is benefiting from
sharing last level cache; while contentAnalyzer and
webSearch suffer from the contention for memory
resource among sibling threads.

3. INTRA-APPLICATION SHARING
In this section, we investigate the performance impact of

memory resource sharing for three key datacenter applica-
tions. Experiments and measurement are conducted using
different thread-to-core (TTC) mappings to study the im-
pact of intra-application sharing, defined as resource sharing
among the threads of an individual multi-threaded applica-
tion.

3.1 Experiment Methodology
The primary platform used in this paper is a dual socket

Intel Clovertown (Xeon E5345), shown in Figure 1. Each
socket has 4 cores. Each 2 cores on the same socket are
sharing a 4MB 16 way last level cache (L2). The platform is
running Linux kernel version 2.6.26 and a customized GCC
4.4.3. We also conducted experiments on the Intel West-
mere, which is presented in Section 4.3.

Table 1 presents a detailed description of the five data-
center applications we used in our study. In the datacen-
ter latency-sensitive applications are either run alone on a
machine or co-located with a batch application to improve
machine utilization. Our study mirrors this execution pol-
icy as we focus on the latency-sensitive applications shown
in Table 1. Also, instead of measuring instruction per cycle
(IPC) or execution time, we use each application’s specified
performance metric in this study. Application-specific met-
rics more accurately describe performance than application
agnostic metrics such as IPC [3]. The performance metrics
are also shown in Table 1. The load for each application is
real world query traces in production datacenters. A load
generator is set up to test the peak capacity behavior of
these applications. The performance shown is applications’
stable behavior after the initialization phase. Because our
measurements use a large amount of queries from produc-
tion, these applications’ behaviors and characteristics are
representative of real-world execution.

In this section we describe experiments when the applica-
tion is running alone to study the interaction within a multi-
threaded application with the underlying resource sharing
and the resulting performance variability. Three measure-
ments are conducted with three thread-to-core mappings:
{XXXX....}, {XX..XX..}, and {X.X.X.X.}. The performance
difference between mapping configurations demonstrates how
sharing LLC, sharing FSB, or sharing both can construc-
tively or destructively impact the performance of applica-
tions of interest. In each mapping, we use taskset to map
threads to cores. This allows us to study the resource shar-
ing outside of the default OS scheduler’s algorithm. This
methodology is shown to be valid for measuring the impact
of cache sharing by prior work [45]. Applications are pa-
rameterized to have a fixed load execute across 4 cores. All
experiments were run three times and the average measure-
ment is presented.

3.2 Measurement and Findings
Figure 6 demonstrates the performance variability due to

different TTC mappings for the latency sensitive applica-

0 1 2 3

4 MB L2 4 MB L2

4 5

4 MB L2

6 7

4 MB L2

MCH

2x333 MHZ FSB (Quad Pumped)
10.6 GB/s per FSB

FSB

Figure 3: Sharing Cache, Separate
FSBs (XX..XX..)

0 1 2 3

4 MB L2 4 MB L2

4 5

4 MB L2

6 7

4 MB L2

MCH

2x333 MHZ FSB (Quad Pumped)
10.6 GB/s per FSB

FSB

Figure 4: Sharing Cache, Sharing
FSB (XXXX....)

0 1 2 3

4 MB L2 4 MB L2

4 5

4 MB L2

6 7

4 MB L2

MCH

2x333 MHZ FSB (Quad Pumped)
10.6 GB/s per FSB

FSB

Figure 5: Separate Caches, Sepa-
rate FSBs (X.X.X.X.)

Table 2: Sharing configurations for sets of 2 cores and sets of 4 cores

# Cores LLC(L2) FSB set of cores

2 Cores
Share: 2 cores - 1 L2 Share: 2 cores - 1 FSB {0,1}, {2,3}, {4,5} {6,7}
Distribute: 2 x (1 core - 1 L2) Share: 2 cores - 1 FSB {0,2}, {1,3}, {4,6}, {5,7}
Distribute: 2 x (1 core - 1 L2) Distribute: 2 x (1 core - 1 FSB) {0,4},{0,5},{0,6},{0,7},{1,4},{1,5}...

4 Cores
Share: 2 x (2 cores - 1 L2) Share: 4 cores - 1 FSB {0,1,2,3}, {4,5,6,7}
Share: 2 x (2 cores - 1 L2) Distribute: 2 x (2 cores - 1 FSB) {0,1,4,5}, {2,3,6,7}
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Figure 6: Performance of different thread-to-core
mappings when each application is running alone.
The higher the bars, the better performance. The
performance variability is up to 20% for each appli-
cation, indicating that the memory resource sharing
has a significant performance impact on these appli-
cations. Also, notice that bigtable is benefiting from
sharing last level cache; while contentAnalyzer and
webSearch suffer from the contention for memory
resource among sibling threads.

3. INTRA-APPLICATION SHARING
In this section, we investigate the performance impact of

memory resource sharing for three key datacenter applica-
tions. Experiments and measurement are conducted using
different thread-to-core (TTC) mappings to study the im-
pact of intra-application sharing, defined as resource sharing
among the threads of an individual multi-threaded applica-
tion.

3.1 Experiment Methodology
The primary platform used in this paper is a dual socket

Intel Clovertown (Xeon E5345), shown in Figure 1. Each
socket has 4 cores. Each 2 cores on the same socket are
sharing a 4MB 16 way last level cache (L2). The platform is
running Linux kernel version 2.6.26 and a customized GCC
4.4.3. We also conducted experiments on the Intel West-
mere, which is presented in Section 4.3.

Table 1 presents a detailed description of the five data-
center applications we used in our study. In the datacen-
ter latency-sensitive applications are either run alone on a
machine or co-located with a batch application to improve
machine utilization. Our study mirrors this execution pol-
icy as we focus on the latency-sensitive applications shown
in Table 1. Also, instead of measuring instruction per cycle
(IPC) or execution time, we use each application’s specified
performance metric in this study. Application-specific met-
rics more accurately describe performance than application
agnostic metrics such as IPC [3]. The performance metrics
are also shown in Table 1. The load for each application is
real world query traces in production datacenters. A load
generator is set up to test the peak capacity behavior of
these applications. The performance shown is applications’
stable behavior after the initialization phase. Because our
measurements use a large amount of queries from produc-
tion, these applications’ behaviors and characteristics are
representative of real-world execution.

In this section we describe experiments when the applica-
tion is running alone to study the interaction within a multi-
threaded application with the underlying resource sharing
and the resulting performance variability. Three measure-
ments are conducted with three thread-to-core mappings:
{XXXX....}, {XX..XX..}, and {X.X.X.X.}. The performance
difference between mapping configurations demonstrates how
sharing LLC, sharing FSB, or sharing both can construc-
tively or destructively impact the performance of applica-
tions of interest. In each mapping, we use taskset to map
threads to cores. This allows us to study the resource shar-
ing outside of the default OS scheduler’s algorithm. This
methodology is shown to be valid for measuring the impact
of cache sharing by prior work [45]. Applications are pa-
rameterized to have a fixed load execute across 4 cores. All
experiments were run three times and the average measure-
ment is presented.

3.2 Measurement and Findings
Figure 6 demonstrates the performance variability due to

different TTC mappings for the latency sensitive applica-
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Table 2: Sharing configurations for sets of 2 cores and sets of 4 cores

# Cores LLC(L2) FSB set of cores

2 Cores
Share: 2 cores - 1 L2 Share: 2 cores - 1 FSB {0,1}, {2,3}, {4,5} {6,7}
Distribute: 2 x (1 core - 1 L2) Share: 2 cores - 1 FSB {0,2}, {1,3}, {4,6}, {5,7}
Distribute: 2 x (1 core - 1 L2) Distribute: 2 x (1 core - 1 FSB) {0,4},{0,5},{0,6},{0,7},{1,4},{1,5}...

4 Cores
Share: 2 x (2 cores - 1 L2) Share: 4 cores - 1 FSB {0,1,2,3}, {4,5,6,7}
Share: 2 x (2 cores - 1 L2) Distribute: 2 x (2 cores - 1 FSB) {0,1,4,5}, {2,3,6,7}
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Figure 6: Performance of different thread-to-core
mappings when each application is running alone.
The higher the bars, the better performance. The
performance variability is up to 20% for each appli-
cation, indicating that the memory resource sharing
has a significant performance impact on these appli-
cations. Also, notice that bigtable is benefiting from
sharing last level cache; while contentAnalyzer and
webSearch suffer from the contention for memory
resource among sibling threads.

3. INTRA-APPLICATION SHARING
In this section, we investigate the performance impact of

memory resource sharing for three key datacenter applica-
tions. Experiments and measurement are conducted using
different thread-to-core (TTC) mappings to study the im-
pact of intra-application sharing, defined as resource sharing
among the threads of an individual multi-threaded applica-
tion.

3.1 Experiment Methodology
The primary platform used in this paper is a dual socket

Intel Clovertown (Xeon E5345), shown in Figure 1. Each
socket has 4 cores. Each 2 cores on the same socket are
sharing a 4MB 16 way last level cache (L2). The platform is
running Linux kernel version 2.6.26 and a customized GCC
4.4.3. We also conducted experiments on the Intel West-
mere, which is presented in Section 4.3.

Table 1 presents a detailed description of the five data-
center applications we used in our study. In the datacen-
ter latency-sensitive applications are either run alone on a
machine or co-located with a batch application to improve
machine utilization. Our study mirrors this execution pol-
icy as we focus on the latency-sensitive applications shown
in Table 1. Also, instead of measuring instruction per cycle
(IPC) or execution time, we use each application’s specified
performance metric in this study. Application-specific met-
rics more accurately describe performance than application
agnostic metrics such as IPC [3]. The performance metrics
are also shown in Table 1. The load for each application is
real world query traces in production datacenters. A load
generator is set up to test the peak capacity behavior of
these applications. The performance shown is applications’
stable behavior after the initialization phase. Because our
measurements use a large amount of queries from produc-
tion, these applications’ behaviors and characteristics are
representative of real-world execution.

In this section we describe experiments when the applica-
tion is running alone to study the interaction within a multi-
threaded application with the underlying resource sharing
and the resulting performance variability. Three measure-
ments are conducted with three thread-to-core mappings:
{XXXX....}, {XX..XX..}, and {X.X.X.X.}. The performance
difference between mapping configurations demonstrates how
sharing LLC, sharing FSB, or sharing both can construc-
tively or destructively impact the performance of applica-
tions of interest. In each mapping, we use taskset to map
threads to cores. This allows us to study the resource shar-
ing outside of the default OS scheduler’s algorithm. This
methodology is shown to be valid for measuring the impact
of cache sharing by prior work [45]. Applications are pa-
rameterized to have a fixed load execute across 4 cores. All
experiments were run three times and the average measure-
ment is presented.

3.2 Measurement and Findings
Figure 6 demonstrates the performance variability due to

different TTC mappings for the latency sensitive applica-
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Table 2: Sharing configurations for sets of 2 cores and sets of 4 cores

# Cores LLC(L2) FSB set of cores

2 Cores
Share: 2 cores - 1 L2 Share: 2 cores - 1 FSB {0,1}, {2,3}, {4,5} {6,7}
Distribute: 2 x (1 core - 1 L2) Share: 2 cores - 1 FSB {0,2}, {1,3}, {4,6}, {5,7}
Distribute: 2 x (1 core - 1 L2) Distribute: 2 x (1 core - 1 FSB) {0,4},{0,5},{0,6},{0,7},{1,4},{1,5}...
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Figure 6: Performance of different thread-to-core
mappings when each application is running alone.
The higher the bars, the better performance. The
performance variability is up to 20% for each appli-
cation, indicating that the memory resource sharing
has a significant performance impact on these appli-
cations. Also, notice that bigtable is benefiting from
sharing last level cache; while contentAnalyzer and
webSearch suffer from the contention for memory
resource among sibling threads.

3. INTRA-APPLICATION SHARING
In this section, we investigate the performance impact of

memory resource sharing for three key datacenter applica-
tions. Experiments and measurement are conducted using
different thread-to-core (TTC) mappings to study the im-
pact of intra-application sharing, defined as resource sharing
among the threads of an individual multi-threaded applica-
tion.

3.1 Experiment Methodology
The primary platform used in this paper is a dual socket

Intel Clovertown (Xeon E5345), shown in Figure 1. Each
socket has 4 cores. Each 2 cores on the same socket are
sharing a 4MB 16 way last level cache (L2). The platform is
running Linux kernel version 2.6.26 and a customized GCC
4.4.3. We also conducted experiments on the Intel West-
mere, which is presented in Section 4.3.

Table 1 presents a detailed description of the five data-
center applications we used in our study. In the datacen-
ter latency-sensitive applications are either run alone on a
machine or co-located with a batch application to improve
machine utilization. Our study mirrors this execution pol-
icy as we focus on the latency-sensitive applications shown
in Table 1. Also, instead of measuring instruction per cycle
(IPC) or execution time, we use each application’s specified
performance metric in this study. Application-specific met-
rics more accurately describe performance than application
agnostic metrics such as IPC [3]. The performance metrics
are also shown in Table 1. The load for each application is
real world query traces in production datacenters. A load
generator is set up to test the peak capacity behavior of
these applications. The performance shown is applications’
stable behavior after the initialization phase. Because our
measurements use a large amount of queries from produc-
tion, these applications’ behaviors and characteristics are
representative of real-world execution.

In this section we describe experiments when the applica-
tion is running alone to study the interaction within a multi-
threaded application with the underlying resource sharing
and the resulting performance variability. Three measure-
ments are conducted with three thread-to-core mappings:
{XXXX....}, {XX..XX..}, and {X.X.X.X.}. The performance
difference between mapping configurations demonstrates how
sharing LLC, sharing FSB, or sharing both can construc-
tively or destructively impact the performance of applica-
tions of interest. In each mapping, we use taskset to map
threads to cores. This allows us to study the resource shar-
ing outside of the default OS scheduler’s algorithm. This
methodology is shown to be valid for measuring the impact
of cache sharing by prior work [45]. Applications are pa-
rameterized to have a fixed load execute across 4 cores. All
experiments were run three times and the average measure-
ment is presented.

3.2 Measurement and Findings
Figure 6 demonstrates the performance variability due to
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Table 2: Sharing configurations for sets of 2 cores and sets of 4 cores

# Cores LLC(L2) FSB set of cores

2 Cores
Share: 2 cores - 1 L2 Share: 2 cores - 1 FSB {0,1}, {2,3}, {4,5} {6,7}
Distribute: 2 x (1 core - 1 L2) Share: 2 cores - 1 FSB {0,2}, {1,3}, {4,6}, {5,7}
Distribute: 2 x (1 core - 1 L2) Distribute: 2 x (1 core - 1 FSB) {0,4},{0,5},{0,6},{0,7},{1,4},{1,5}...
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Figure 6: Performance of different thread-to-core
mappings when each application is running alone.
The higher the bars, the better performance. The
performance variability is up to 20% for each appli-
cation, indicating that the memory resource sharing
has a significant performance impact on these appli-
cations. Also, notice that bigtable is benefiting from
sharing last level cache; while contentAnalyzer and
webSearch suffer from the contention for memory
resource among sibling threads.

3. INTRA-APPLICATION SHARING
In this section, we investigate the performance impact of

memory resource sharing for three key datacenter applica-
tions. Experiments and measurement are conducted using
different thread-to-core (TTC) mappings to study the im-
pact of intra-application sharing, defined as resource sharing
among the threads of an individual multi-threaded applica-
tion.

3.1 Experiment Methodology
The primary platform used in this paper is a dual socket

Intel Clovertown (Xeon E5345), shown in Figure 1. Each
socket has 4 cores. Each 2 cores on the same socket are
sharing a 4MB 16 way last level cache (L2). The platform is
running Linux kernel version 2.6.26 and a customized GCC
4.4.3. We also conducted experiments on the Intel West-
mere, which is presented in Section 4.3.

Table 1 presents a detailed description of the five data-
center applications we used in our study. In the datacen-
ter latency-sensitive applications are either run alone on a
machine or co-located with a batch application to improve
machine utilization. Our study mirrors this execution pol-
icy as we focus on the latency-sensitive applications shown
in Table 1. Also, instead of measuring instruction per cycle
(IPC) or execution time, we use each application’s specified
performance metric in this study. Application-specific met-
rics more accurately describe performance than application
agnostic metrics such as IPC [3]. The performance metrics
are also shown in Table 1. The load for each application is
real world query traces in production datacenters. A load
generator is set up to test the peak capacity behavior of
these applications. The performance shown is applications’
stable behavior after the initialization phase. Because our
measurements use a large amount of queries from produc-
tion, these applications’ behaviors and characteristics are
representative of real-world execution.

In this section we describe experiments when the applica-
tion is running alone to study the interaction within a multi-
threaded application with the underlying resource sharing
and the resulting performance variability. Three measure-
ments are conducted with three thread-to-core mappings:
{XXXX....}, {XX..XX..}, and {X.X.X.X.}. The performance
difference between mapping configurations demonstrates how
sharing LLC, sharing FSB, or sharing both can construc-
tively or destructively impact the performance of applica-
tions of interest. In each mapping, we use taskset to map
threads to cores. This allows us to study the resource shar-
ing outside of the default OS scheduler’s algorithm. This
methodology is shown to be valid for measuring the impact
of cache sharing by prior work [45]. Applications are pa-
rameterized to have a fixed load execute across 4 cores. All
experiments were run three times and the average measure-
ment is presented.

3.2 Measurement and Findings
Figure 6 demonstrates the performance variability due to

different TTC mappings for the latency sensitive applica-
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Table 2: Sharing configurations for sets of 2 cores and sets of 4 cores

# Cores LLC(L2) FSB set of cores

2 Cores
Share: 2 cores - 1 L2 Share: 2 cores - 1 FSB {0,1}, {2,3}, {4,5} {6,7}
Distribute: 2 x (1 core - 1 L2) Share: 2 cores - 1 FSB {0,2}, {1,3}, {4,6}, {5,7}
Distribute: 2 x (1 core - 1 L2) Distribute: 2 x (1 core - 1 FSB) {0,4},{0,5},{0,6},{0,7},{1,4},{1,5}...

4 Cores
Share: 2 x (2 cores - 1 L2) Share: 4 cores - 1 FSB {0,1,2,3}, {4,5,6,7}
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Figure 6: Performance of different thread-to-core
mappings when each application is running alone.
The higher the bars, the better performance. The
performance variability is up to 20% for each appli-
cation, indicating that the memory resource sharing
has a significant performance impact on these appli-
cations. Also, notice that bigtable is benefiting from
sharing last level cache; while contentAnalyzer and
webSearch suffer from the contention for memory
resource among sibling threads.

3. INTRA-APPLICATION SHARING
In this section, we investigate the performance impact of

memory resource sharing for three key datacenter applica-
tions. Experiments and measurement are conducted using
different thread-to-core (TTC) mappings to study the im-
pact of intra-application sharing, defined as resource sharing
among the threads of an individual multi-threaded applica-
tion.

3.1 Experiment Methodology
The primary platform used in this paper is a dual socket

Intel Clovertown (Xeon E5345), shown in Figure 1. Each
socket has 4 cores. Each 2 cores on the same socket are
sharing a 4MB 16 way last level cache (L2). The platform is
running Linux kernel version 2.6.26 and a customized GCC
4.4.3. We also conducted experiments on the Intel West-
mere, which is presented in Section 4.3.

Table 1 presents a detailed description of the five data-
center applications we used in our study. In the datacen-
ter latency-sensitive applications are either run alone on a
machine or co-located with a batch application to improve
machine utilization. Our study mirrors this execution pol-
icy as we focus on the latency-sensitive applications shown
in Table 1. Also, instead of measuring instruction per cycle
(IPC) or execution time, we use each application’s specified
performance metric in this study. Application-specific met-
rics more accurately describe performance than application
agnostic metrics such as IPC [3]. The performance metrics
are also shown in Table 1. The load for each application is
real world query traces in production datacenters. A load
generator is set up to test the peak capacity behavior of
these applications. The performance shown is applications’
stable behavior after the initialization phase. Because our
measurements use a large amount of queries from produc-
tion, these applications’ behaviors and characteristics are
representative of real-world execution.

In this section we describe experiments when the applica-
tion is running alone to study the interaction within a multi-
threaded application with the underlying resource sharing
and the resulting performance variability. Three measure-
ments are conducted with three thread-to-core mappings:
{XXXX....}, {XX..XX..}, and {X.X.X.X.}. The performance
difference between mapping configurations demonstrates how
sharing LLC, sharing FSB, or sharing both can construc-
tively or destructively impact the performance of applica-
tions of interest. In each mapping, we use taskset to map
threads to cores. This allows us to study the resource shar-
ing outside of the default OS scheduler’s algorithm. This
methodology is shown to be valid for measuring the impact
of cache sharing by prior work [45]. Applications are pa-
rameterized to have a fixed load execute across 4 cores. All
experiments were run three times and the average measure-
ment is presented.

3.2 Measurement and Findings
Figure 6 demonstrates the performance variability due to
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Table 2: Sharing configurations for sets of 2 cores and sets of 4 cores

# Cores LLC(L2) FSB set of cores

2 Cores
Share: 2 cores - 1 L2 Share: 2 cores - 1 FSB {0,1}, {2,3}, {4,5} {6,7}
Distribute: 2 x (1 core - 1 L2) Share: 2 cores - 1 FSB {0,2}, {1,3}, {4,6}, {5,7}
Distribute: 2 x (1 core - 1 L2) Distribute: 2 x (1 core - 1 FSB) {0,4},{0,5},{0,6},{0,7},{1,4},{1,5}...

4 Cores
Share: 2 x (2 cores - 1 L2) Share: 4 cores - 1 FSB {0,1,2,3}, {4,5,6,7}
Share: 2 x (2 cores - 1 L2) Distribute: 2 x (2 cores - 1 FSB) {0,1,4,5}, {2,3,6,7}
Distribute: 4 x (1 core - 1 L2) Distribute: 2 x (2 cores - 1 FSB) {0,2,4,6}, {1,3,5,7}
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Figure 6: Performance of different thread-to-core
mappings when each application is running alone.
The higher the bars, the better performance. The
performance variability is up to 20% for each appli-
cation, indicating that the memory resource sharing
has a significant performance impact on these appli-
cations. Also, notice that bigtable is benefiting from
sharing last level cache; while contentAnalyzer and
webSearch suffer from the contention for memory
resource among sibling threads.

3. INTRA-APPLICATION SHARING
In this section, we investigate the performance impact of

memory resource sharing for three key datacenter applica-
tions. Experiments and measurement are conducted using
different thread-to-core (TTC) mappings to study the im-
pact of intra-application sharing, defined as resource sharing
among the threads of an individual multi-threaded applica-
tion.

3.1 Experiment Methodology
The primary platform used in this paper is a dual socket

Intel Clovertown (Xeon E5345), shown in Figure 1. Each
socket has 4 cores. Each 2 cores on the same socket are
sharing a 4MB 16 way last level cache (L2). The platform is
running Linux kernel version 2.6.26 and a customized GCC
4.4.3. We also conducted experiments on the Intel West-
mere, which is presented in Section 4.3.

Table 1 presents a detailed description of the five data-
center applications we used in our study. In the datacen-
ter latency-sensitive applications are either run alone on a
machine or co-located with a batch application to improve
machine utilization. Our study mirrors this execution pol-
icy as we focus on the latency-sensitive applications shown
in Table 1. Also, instead of measuring instruction per cycle
(IPC) or execution time, we use each application’s specified
performance metric in this study. Application-specific met-
rics more accurately describe performance than application
agnostic metrics such as IPC [3]. The performance metrics
are also shown in Table 1. The load for each application is
real world query traces in production datacenters. A load
generator is set up to test the peak capacity behavior of
these applications. The performance shown is applications’
stable behavior after the initialization phase. Because our
measurements use a large amount of queries from produc-
tion, these applications’ behaviors and characteristics are
representative of real-world execution.

In this section we describe experiments when the applica-
tion is running alone to study the interaction within a multi-
threaded application with the underlying resource sharing
and the resulting performance variability. Three measure-
ments are conducted with three thread-to-core mappings:
{XXXX....}, {XX..XX..}, and {X.X.X.X.}. The performance
difference between mapping configurations demonstrates how
sharing LLC, sharing FSB, or sharing both can construc-
tively or destructively impact the performance of applica-
tions of interest. In each mapping, we use taskset to map
threads to cores. This allows us to study the resource shar-
ing outside of the default OS scheduler’s algorithm. This
methodology is shown to be valid for measuring the impact
of cache sharing by prior work [45]. Applications are pa-
rameterized to have a fixed load execute across 4 cores. All
experiments were run three times and the average measure-
ment is presented.

3.2 Measurement and Findings
Figure 6 demonstrates the performance variability due to

different TTC mappings for the latency sensitive applica-
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Table 2: Sharing configurations for sets of 2 cores and sets of 4 cores

# Cores LLC(L2) FSB set of cores

2 Cores
Share: 2 cores - 1 L2 Share: 2 cores - 1 FSB {0,1}, {2,3}, {4,5} {6,7}
Distribute: 2 x (1 core - 1 L2) Share: 2 cores - 1 FSB {0,2}, {1,3}, {4,6}, {5,7}
Distribute: 2 x (1 core - 1 L2) Distribute: 2 x (1 core - 1 FSB) {0,4},{0,5},{0,6},{0,7},{1,4},{1,5}...

4 Cores
Share: 2 x (2 cores - 1 L2) Share: 4 cores - 1 FSB {0,1,2,3}, {4,5,6,7}
Share: 2 x (2 cores - 1 L2) Distribute: 2 x (2 cores - 1 FSB) {0,1,4,5}, {2,3,6,7}
Distribute: 4 x (1 core - 1 L2) Distribute: 2 x (2 cores - 1 FSB) {0,2,4,6}, {1,3,5,7}
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Figure 6: Performance of different thread-to-core
mappings when each application is running alone.
The higher the bars, the better performance. The
performance variability is up to 20% for each appli-
cation, indicating that the memory resource sharing
has a significant performance impact on these appli-
cations. Also, notice that bigtable is benefiting from
sharing last level cache; while contentAnalyzer and
webSearch suffer from the contention for memory
resource among sibling threads.

3. INTRA-APPLICATION SHARING
In this section, we investigate the performance impact of

memory resource sharing for three key datacenter applica-
tions. Experiments and measurement are conducted using
different thread-to-core (TTC) mappings to study the im-
pact of intra-application sharing, defined as resource sharing
among the threads of an individual multi-threaded applica-
tion.

3.1 Experiment Methodology
The primary platform used in this paper is a dual socket

Intel Clovertown (Xeon E5345), shown in Figure 1. Each
socket has 4 cores. Each 2 cores on the same socket are
sharing a 4MB 16 way last level cache (L2). The platform is
running Linux kernel version 2.6.26 and a customized GCC
4.4.3. We also conducted experiments on the Intel West-
mere, which is presented in Section 4.3.

Table 1 presents a detailed description of the five data-
center applications we used in our study. In the datacen-
ter latency-sensitive applications are either run alone on a
machine or co-located with a batch application to improve
machine utilization. Our study mirrors this execution pol-
icy as we focus on the latency-sensitive applications shown
in Table 1. Also, instead of measuring instruction per cycle
(IPC) or execution time, we use each application’s specified
performance metric in this study. Application-specific met-
rics more accurately describe performance than application
agnostic metrics such as IPC [3]. The performance metrics
are also shown in Table 1. The load for each application is
real world query traces in production datacenters. A load
generator is set up to test the peak capacity behavior of
these applications. The performance shown is applications’
stable behavior after the initialization phase. Because our
measurements use a large amount of queries from produc-
tion, these applications’ behaviors and characteristics are
representative of real-world execution.

In this section we describe experiments when the applica-
tion is running alone to study the interaction within a multi-
threaded application with the underlying resource sharing
and the resulting performance variability. Three measure-
ments are conducted with three thread-to-core mappings:
{XXXX....}, {XX..XX..}, and {X.X.X.X.}. The performance
difference between mapping configurations demonstrates how
sharing LLC, sharing FSB, or sharing both can construc-
tively or destructively impact the performance of applica-
tions of interest. In each mapping, we use taskset to map
threads to cores. This allows us to study the resource shar-
ing outside of the default OS scheduler’s algorithm. This
methodology is shown to be valid for measuring the impact
of cache sharing by prior work [45]. Applications are pa-
rameterized to have a fixed load execute across 4 cores. All
experiments were run three times and the average measure-
ment is presented.

3.2 Measurement and Findings
Figure 6 demonstrates the performance variability due to

different TTC mappings for the latency sensitive applica-
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Table 2: Sharing configurations for sets of 2 cores and sets of 4 cores

# Cores LLC(L2) FSB set of cores

2 Cores
Share: 2 cores - 1 L2 Share: 2 cores - 1 FSB {0,1}, {2,3}, {4,5} {6,7}
Distribute: 2 x (1 core - 1 L2) Share: 2 cores - 1 FSB {0,2}, {1,3}, {4,6}, {5,7}
Distribute: 2 x (1 core - 1 L2) Distribute: 2 x (1 core - 1 FSB) {0,4},{0,5},{0,6},{0,7},{1,4},{1,5}...

4 Cores
Share: 2 x (2 cores - 1 L2) Share: 4 cores - 1 FSB {0,1,2,3}, {4,5,6,7}
Share: 2 x (2 cores - 1 L2) Distribute: 2 x (2 cores - 1 FSB) {0,1,4,5}, {2,3,6,7}
Distribute: 4 x (1 core - 1 L2) Distribute: 2 x (2 cores - 1 FSB) {0,2,4,6}, {1,3,5,7}
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Figure 6: Performance of different thread-to-core
mappings when each application is running alone.
The higher the bars, the better performance. The
performance variability is up to 20% for each appli-
cation, indicating that the memory resource sharing
has a significant performance impact on these appli-
cations. Also, notice that bigtable is benefiting from
sharing last level cache; while contentAnalyzer and
webSearch suffer from the contention for memory
resource among sibling threads.

3. INTRA-APPLICATION SHARING
In this section, we investigate the performance impact of

memory resource sharing for three key datacenter applica-
tions. Experiments and measurement are conducted using
different thread-to-core (TTC) mappings to study the im-
pact of intra-application sharing, defined as resource sharing
among the threads of an individual multi-threaded applica-
tion.

3.1 Experiment Methodology
The primary platform used in this paper is a dual socket

Intel Clovertown (Xeon E5345), shown in Figure 1. Each
socket has 4 cores. Each 2 cores on the same socket are
sharing a 4MB 16 way last level cache (L2). The platform is
running Linux kernel version 2.6.26 and a customized GCC
4.4.3. We also conducted experiments on the Intel West-
mere, which is presented in Section 4.3.

Table 1 presents a detailed description of the five data-
center applications we used in our study. In the datacen-
ter latency-sensitive applications are either run alone on a
machine or co-located with a batch application to improve
machine utilization. Our study mirrors this execution pol-
icy as we focus on the latency-sensitive applications shown
in Table 1. Also, instead of measuring instruction per cycle
(IPC) or execution time, we use each application’s specified
performance metric in this study. Application-specific met-
rics more accurately describe performance than application
agnostic metrics such as IPC [3]. The performance metrics
are also shown in Table 1. The load for each application is
real world query traces in production datacenters. A load
generator is set up to test the peak capacity behavior of
these applications. The performance shown is applications’
stable behavior after the initialization phase. Because our
measurements use a large amount of queries from produc-
tion, these applications’ behaviors and characteristics are
representative of real-world execution.

In this section we describe experiments when the applica-
tion is running alone to study the interaction within a multi-
threaded application with the underlying resource sharing
and the resulting performance variability. Three measure-
ments are conducted with three thread-to-core mappings:
{XXXX....}, {XX..XX..}, and {X.X.X.X.}. The performance
difference between mapping configurations demonstrates how
sharing LLC, sharing FSB, or sharing both can construc-
tively or destructively impact the performance of applica-
tions of interest. In each mapping, we use taskset to map
threads to cores. This allows us to study the resource shar-
ing outside of the default OS scheduler’s algorithm. This
methodology is shown to be valid for measuring the impact
of cache sharing by prior work [45]. Applications are pa-
rameterized to have a fixed load execute across 4 cores. All
experiments were run three times and the average measure-
ment is presented.

3.2 Measurement and Findings
Figure 6 demonstrates the performance variability due to

different TTC mappings for the latency sensitive applica-

0 1 2 3

4 MB L2 4 MB L2

4 5

4 MB L2

6 7

4 MB L2

MCH

2x333 MHZ FSB (Quad Pumped)
10.6 GB/s per FSB

FSB

Figure 3: Sharing Cache, Separate
FSBs (XX..XX..)

0 1 2 3

4 MB L2 4 MB L2

4 5

4 MB L2

6 7

4 MB L2

MCH

2x333 MHZ FSB (Quad Pumped)
10.6 GB/s per FSB

FSB

Figure 4: Sharing Cache, Sharing
FSB (XXXX....)

0 1 2 3

4 MB L2 4 MB L2

4 5

4 MB L2

6 7

4 MB L2

MCH

2x333 MHZ FSB (Quad Pumped)
10.6 GB/s per FSB

FSB

Figure 5: Separate Caches, Sepa-
rate FSBs (X.X.X.X.)

Table 2: Sharing configurations for sets of 2 cores and sets of 4 cores

# Cores LLC(L2) FSB set of cores

2 Cores
Share: 2 cores - 1 L2 Share: 2 cores - 1 FSB {0,1}, {2,3}, {4,5} {6,7}
Distribute: 2 x (1 core - 1 L2) Share: 2 cores - 1 FSB {0,2}, {1,3}, {4,6}, {5,7}
Distribute: 2 x (1 core - 1 L2) Distribute: 2 x (1 core - 1 FSB) {0,4},{0,5},{0,6},{0,7},{1,4},{1,5}...

4 Cores
Share: 2 x (2 cores - 1 L2) Share: 4 cores - 1 FSB {0,1,2,3}, {4,5,6,7}
Share: 2 x (2 cores - 1 L2) Distribute: 2 x (2 cores - 1 FSB) {0,1,4,5}, {2,3,6,7}
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Figure 6: Performance of different thread-to-core
mappings when each application is running alone.
The higher the bars, the better performance. The
performance variability is up to 20% for each appli-
cation, indicating that the memory resource sharing
has a significant performance impact on these appli-
cations. Also, notice that bigtable is benefiting from
sharing last level cache; while contentAnalyzer and
webSearch suffer from the contention for memory
resource among sibling threads.

3. INTRA-APPLICATION SHARING
In this section, we investigate the performance impact of

memory resource sharing for three key datacenter applica-
tions. Experiments and measurement are conducted using
different thread-to-core (TTC) mappings to study the im-
pact of intra-application sharing, defined as resource sharing
among the threads of an individual multi-threaded applica-
tion.

3.1 Experiment Methodology
The primary platform used in this paper is a dual socket

Intel Clovertown (Xeon E5345), shown in Figure 1. Each
socket has 4 cores. Each 2 cores on the same socket are
sharing a 4MB 16 way last level cache (L2). The platform is
running Linux kernel version 2.6.26 and a customized GCC
4.4.3. We also conducted experiments on the Intel West-
mere, which is presented in Section 4.3.

Table 1 presents a detailed description of the five data-
center applications we used in our study. In the datacen-
ter latency-sensitive applications are either run alone on a
machine or co-located with a batch application to improve
machine utilization. Our study mirrors this execution pol-
icy as we focus on the latency-sensitive applications shown
in Table 1. Also, instead of measuring instruction per cycle
(IPC) or execution time, we use each application’s specified
performance metric in this study. Application-specific met-
rics more accurately describe performance than application
agnostic metrics such as IPC [3]. The performance metrics
are also shown in Table 1. The load for each application is
real world query traces in production datacenters. A load
generator is set up to test the peak capacity behavior of
these applications. The performance shown is applications’
stable behavior after the initialization phase. Because our
measurements use a large amount of queries from produc-
tion, these applications’ behaviors and characteristics are
representative of real-world execution.

In this section we describe experiments when the applica-
tion is running alone to study the interaction within a multi-
threaded application with the underlying resource sharing
and the resulting performance variability. Three measure-
ments are conducted with three thread-to-core mappings:
{XXXX....}, {XX..XX..}, and {X.X.X.X.}. The performance
difference between mapping configurations demonstrates how
sharing LLC, sharing FSB, or sharing both can construc-
tively or destructively impact the performance of applica-
tions of interest. In each mapping, we use taskset to map
threads to cores. This allows us to study the resource shar-
ing outside of the default OS scheduler’s algorithm. This
methodology is shown to be valid for measuring the impact
of cache sharing by prior work [45]. Applications are pa-
rameterized to have a fixed load execute across 4 cores. All
experiments were run three times and the average measure-
ment is presented.

3.2 Measurement and Findings
Figure 6 demonstrates the performance variability due to

different TTC mappings for the latency sensitive applica-
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Table 2: Sharing configurations for sets of 2 cores and sets of 4 cores

# Cores LLC(L2) FSB set of cores

2 Cores
Share: 2 cores - 1 L2 Share: 2 cores - 1 FSB {0,1}, {2,3}, {4,5} {6,7}
Distribute: 2 x (1 core - 1 L2) Share: 2 cores - 1 FSB {0,2}, {1,3}, {4,6}, {5,7}
Distribute: 2 x (1 core - 1 L2) Distribute: 2 x (1 core - 1 FSB) {0,4},{0,5},{0,6},{0,7},{1,4},{1,5}...

4 Cores
Share: 2 x (2 cores - 1 L2) Share: 4 cores - 1 FSB {0,1,2,3}, {4,5,6,7}
Share: 2 x (2 cores - 1 L2) Distribute: 2 x (2 cores - 1 FSB) {0,1,4,5}, {2,3,6,7}
Distribute: 4 x (1 core - 1 L2) Distribute: 2 x (2 cores - 1 FSB) {0,2,4,6}, {1,3,5,7}
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Figure 6: Performance of different thread-to-core
mappings when each application is running alone.
The higher the bars, the better performance. The
performance variability is up to 20% for each appli-
cation, indicating that the memory resource sharing
has a significant performance impact on these appli-
cations. Also, notice that bigtable is benefiting from
sharing last level cache; while contentAnalyzer and
webSearch suffer from the contention for memory
resource among sibling threads.

3. INTRA-APPLICATION SHARING
In this section, we investigate the performance impact of

memory resource sharing for three key datacenter applica-
tions. Experiments and measurement are conducted using
different thread-to-core (TTC) mappings to study the im-
pact of intra-application sharing, defined as resource sharing
among the threads of an individual multi-threaded applica-
tion.

3.1 Experiment Methodology
The primary platform used in this paper is a dual socket

Intel Clovertown (Xeon E5345), shown in Figure 1. Each
socket has 4 cores. Each 2 cores on the same socket are
sharing a 4MB 16 way last level cache (L2). The platform is
running Linux kernel version 2.6.26 and a customized GCC
4.4.3. We also conducted experiments on the Intel West-
mere, which is presented in Section 4.3.

Table 1 presents a detailed description of the five data-
center applications we used in our study. In the datacen-
ter latency-sensitive applications are either run alone on a
machine or co-located with a batch application to improve
machine utilization. Our study mirrors this execution pol-
icy as we focus on the latency-sensitive applications shown
in Table 1. Also, instead of measuring instruction per cycle
(IPC) or execution time, we use each application’s specified
performance metric in this study. Application-specific met-
rics more accurately describe performance than application
agnostic metrics such as IPC [3]. The performance metrics
are also shown in Table 1. The load for each application is
real world query traces in production datacenters. A load
generator is set up to test the peak capacity behavior of
these applications. The performance shown is applications’
stable behavior after the initialization phase. Because our
measurements use a large amount of queries from produc-
tion, these applications’ behaviors and characteristics are
representative of real-world execution.

In this section we describe experiments when the applica-
tion is running alone to study the interaction within a multi-
threaded application with the underlying resource sharing
and the resulting performance variability. Three measure-
ments are conducted with three thread-to-core mappings:
{XXXX....}, {XX..XX..}, and {X.X.X.X.}. The performance
difference between mapping configurations demonstrates how
sharing LLC, sharing FSB, or sharing both can construc-
tively or destructively impact the performance of applica-
tions of interest. In each mapping, we use taskset to map
threads to cores. This allows us to study the resource shar-
ing outside of the default OS scheduler’s algorithm. This
methodology is shown to be valid for measuring the impact
of cache sharing by prior work [45]. Applications are pa-
rameterized to have a fixed load execute across 4 cores. All
experiments were run three times and the average measure-
ment is presented.

3.2 Measurement and Findings
Figure 6 demonstrates the performance variability due to

different TTC mappings for the latency sensitive applica-
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Table 2: Sharing configurations for sets of 2 cores and sets of 4 cores

# Cores LLC(L2) FSB set of cores

2 Cores
Share: 2 cores - 1 L2 Share: 2 cores - 1 FSB {0,1}, {2,3}, {4,5} {6,7}
Distribute: 2 x (1 core - 1 L2) Share: 2 cores - 1 FSB {0,2}, {1,3}, {4,6}, {5,7}
Distribute: 2 x (1 core - 1 L2) Distribute: 2 x (1 core - 1 FSB) {0,4},{0,5},{0,6},{0,7},{1,4},{1,5}...

4 Cores
Share: 2 x (2 cores - 1 L2) Share: 4 cores - 1 FSB {0,1,2,3}, {4,5,6,7}
Share: 2 x (2 cores - 1 L2) Distribute: 2 x (2 cores - 1 FSB) {0,1,4,5}, {2,3,6,7}
Distribute: 4 x (1 core - 1 L2) Distribute: 2 x (2 cores - 1 FSB) {0,2,4,6}, {1,3,5,7}

batch. This work focuses on the performance of the key

latency sensitive applications.

3. INTRA-APPLICATION SHARING
In this section, we investigate the performance impact of

memory resource sharing for three key datacenter applica-

tions. Experiments and measurement are conducted using

different thread-to-core (TTC) mappings to study the im-

pact of intra-application sharing, defined as resource sharing

among the threads of an individual multi-threaded applica-

tion.

3.1 Experiment Methodology
The primary platform used in this paper is a dual socket

Intel Clovertown (Xeon E5345), shown in Figure 1. Each

socket has 4 cores. Each 2 cores on the same socket are

sharing a 4MB 16 way last level cache (L2). The platform is

running Linux kernel version 2.6.26 and a customized GCC

4.4.3. We also conducted experiments on Intel Westmere,

which is presented in Section 4.3.

[Benchmarks, inputs and metrics] Table 1 presents

a detailed description of the five datacenter applications we

use in our study. In the datacenter latency-sensitive applica-

tions are either run alone on a machine or co-located with a

batch application to improve machine utilization. Our study

mirrors this execution policy as we focus on the latency-

sensitive applications shown in Table 1. Also, instead of

measuring instruction per cycle (IPC) or execution time, we

use each application’s specified performance metric in this

study. Application specific metrics more accurately describe

performance than application agnostic metrics such as IPC

[3]. The performance metrics are also shown in Table 1.

The load for each application is real world query traces in

production datacenters. A load generator is set up to test

the peak capacity behavior of these applications. The per-

formance shown is applications’ stable behavior after the

initialization phase. Because our measurements use a large

amount of queries from production, these applications’ be-

haviors and characteristics are representative of real-world

execution.

In this section we conduct experiments when the applica-

tion is running alone to study the interaction within a multi-

threaded application with the underlying resource sharing

and the resulting performance variability. Three measure-

ments are conducted with three thread-to-core mappings:

{XXXX....}, {XX..XX..}, and {X.X.X.X.}. The performance

difference between mapping configurations demonstrates how

sharing LLC, sharing FSB, or sharing both can construc-

tively or destructively impact the performance of applica-

tions of interest. In each mapping, we use taskset to map

threads to cores. This allows us to study the resource shar-

ing outside of the default OS scheduler’s algorithm. This

methodology is shown to be valid for measuring the impact

of cache sharing by prior work [45]. Applications are pa-

rameterized to have a fixed load execute across 4 cores. All

experiments are run three times and the average measure-

ment is presented.

3.2 Measurement and Findings
Figure 6 demonstrates the performance variability due to

different TTC mappings for the latency sensitive applica-

tions presented in Table 1. For each applicaton, the x axis

shows the subset of cores the application is mapped to. The

y axis shows each application’s performance in each TTC

mapping scenario, normalized by its performance using the

mapping {X.X.X.X.}.
The results show that the performance impact of memory

resource sharing for these applications is significant, up to

22% for contentAnalyzer, 18% for bigtable and 8% for web-
Search. Secondly, each application prefers different shar-

ing configurations. Both contentAnalyzer and webSearch
prefer to run on separate LLCs and separate FSBs, the

mapping {X.X.X.X.} has 10% performance improvement for

webSearch and 20% for contentAnalyzer compared to map-

ping {XXXX....}, when all threads are on the same socket

sharing 2 LLCs and a single FSB. On the other hand, bigtable
achieves the best performance when running on the same

socket sharing 2 LLCs and a FSB, and the {X.X.X.X.} map-
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Table 2: Sharing configurations for sets of 2 cores and sets of 4 cores

# Cores LLC(L2) FSB set of cores

2 Cores
Share: 2 cores - 1 L2 Share: 2 cores - 1 FSB {0,1}, {2,3}, {4,5} {6,7}
Distribute: 2 x (1 core - 1 L2) Share: 2 cores - 1 FSB {0,2}, {1,3}, {4,6}, {5,7}
Distribute: 2 x (1 core - 1 L2) Distribute: 2 x (1 core - 1 FSB) {0,4},{0,5},{0,6},{0,7},{1,4},{1,5}...

4 Cores
Share: 2 x (2 cores - 1 L2) Share: 4 cores - 1 FSB {0,1,2,3}, {4,5,6,7}
Share: 2 x (2 cores - 1 L2) Distribute: 2 x (2 cores - 1 FSB) {0,1,4,5}, {2,3,6,7}
Distribute: 4 x (1 core - 1 L2) Distribute: 2 x (2 cores - 1 FSB) {0,2,4,6}, {1,3,5,7}

batch. This work focuses on the performance of the key

latency sensitive applications.

3. INTRA-APPLICATION SHARING
In this section, we investigate the performance impact of

memory resource sharing for three key datacenter applica-

tions. Experiments and measurement are conducted using

different thread-to-core (TTC) mappings to study the im-

pact of intra-application sharing, defined as resource sharing

among the threads of an individual multi-threaded applica-

tion.

3.1 Experiment Methodology
The primary platform used in this paper is a dual socket

Intel Clovertown (Xeon E5345), shown in Figure 1. Each

socket has 4 cores. Each 2 cores on the same socket are

sharing a 4MB 16 way last level cache (L2). The platform is

running Linux kernel version 2.6.26 and a customized GCC

4.4.3. We also conducted experiments on Intel Westmere,

which is presented in Section 4.3.

[Benchmarks, inputs and metrics] Table 1 presents

a detailed description of the five datacenter applications we

use in our study. In the datacenter latency-sensitive applica-

tions are either run alone on a machine or co-located with a

batch application to improve machine utilization. Our study

mirrors this execution policy as we focus on the latency-

sensitive applications shown in Table 1. Also, instead of

measuring instruction per cycle (IPC) or execution time, we

use each application’s specified performance metric in this

study. Application specific metrics more accurately describe

performance than application agnostic metrics such as IPC

[3]. The performance metrics are also shown in Table 1.

The load for each application is real world query traces in

production datacenters. A load generator is set up to test

the peak capacity behavior of these applications. The per-

formance shown is applications’ stable behavior after the

initialization phase. Because our measurements use a large

amount of queries from production, these applications’ be-

haviors and characteristics are representative of real-world

execution.

In this section we conduct experiments when the applica-

tion is running alone to study the interaction within a multi-

threaded application with the underlying resource sharing

and the resulting performance variability. Three measure-

ments are conducted with three thread-to-core mappings:

{XXXX....}, {XX..XX..}, and {X.X.X.X.}. The performance

difference between mapping configurations demonstrates how

sharing LLC, sharing FSB, or sharing both can construc-

tively or destructively impact the performance of applica-

tions of interest. In each mapping, we use taskset to map

threads to cores. This allows us to study the resource shar-

ing outside of the default OS scheduler’s algorithm. This

methodology is shown to be valid for measuring the impact

of cache sharing by prior work [45]. Applications are pa-

rameterized to have a fixed load execute across 4 cores. All

experiments are run three times and the average measure-

ment is presented.

3.2 Measurement and Findings
Figure 6 demonstrates the performance variability due to

different TTC mappings for the latency sensitive applica-

tions presented in Table 1. For each applicaton, the x axis

shows the subset of cores the application is mapped to. The

y axis shows each application’s performance in each TTC

mapping scenario, normalized by its performance using the

mapping {X.X.X.X.}.
The results show that the performance impact of memory

resource sharing for these applications is significant, up to

22% for contentAnalyzer, 18% for bigtable and 8% for web-
Search. Secondly, each application prefers different shar-

ing configurations. Both contentAnalyzer and webSearch
prefer to run on separate LLCs and separate FSBs, the

mapping {X.X.X.X.} has 10% performance improvement for

webSearch and 20% for contentAnalyzer compared to map-

ping {XXXX....}, when all threads are on the same socket

sharing 2 LLCs and a single FSB. On the other hand, bigtable
achieves the best performance when running on the same

socket sharing 2 LLCs and a FSB, and the {X.X.X.X.} map-
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Table 2: Sharing configurations for sets of 2 cores and sets of 4 cores

# Cores LLC(L2) FSB set of cores

2 Cores
Share: 2 cores - 1 L2 Share: 2 cores - 1 FSB {0,1}, {2,3}, {4,5} {6,7}
Distribute: 2 x (1 core - 1 L2) Share: 2 cores - 1 FSB {0,2}, {1,3}, {4,6}, {5,7}
Distribute: 2 x (1 core - 1 L2) Distribute: 2 x (1 core - 1 FSB) {0,4},{0,5},{0,6},{0,7},{1,4},{1,5}...

4 Cores
Share: 2 x (2 cores - 1 L2) Share: 4 cores - 1 FSB {0,1,2,3}, {4,5,6,7}
Share: 2 x (2 cores - 1 L2) Distribute: 2 x (2 cores - 1 FSB) {0,1,4,5}, {2,3,6,7}
Distribute: 4 x (1 core - 1 L2) Distribute: 2 x (2 cores - 1 FSB) {0,2,4,6}, {1,3,5,7}

batch. This work focuses on the performance of the key

latency sensitive applications.

3. INTRA-APPLICATION SHARING
In this section, we investigate the performance impact of

memory resource sharing for three key datacenter applica-

tions. Experiments and measurement are conducted using

different thread-to-core (TTC) mappings to study the im-

pact of intra-application sharing, defined as resource sharing

among the threads of an individual multi-threaded applica-

tion.

3.1 Experiment Methodology
The primary platform used in this paper is a dual socket

Intel Clovertown (Xeon E5345), shown in Figure 1. Each

socket has 4 cores. Each 2 cores on the same socket are

sharing a 4MB 16 way last level cache (L2). The platform is

running Linux kernel version 2.6.26 and a customized GCC

4.4.3. We also conducted experiments on Intel Westmere,

which is presented in Section 4.3.

[Benchmarks, inputs and metrics] Table 1 presents

a detailed description of the five datacenter applications we

use in our study. In the datacenter latency-sensitive applica-

tions are either run alone on a machine or co-located with a

batch application to improve machine utilization. Our study

mirrors this execution policy as we focus on the latency-

sensitive applications shown in Table 1. Also, instead of

measuring instruction per cycle (IPC) or execution time, we

use each application’s specified performance metric in this

study. Application specific metrics more accurately describe

performance than application agnostic metrics such as IPC

[3]. The performance metrics are also shown in Table 1.

The load for each application is real world query traces in

production datacenters. A load generator is set up to test

the peak capacity behavior of these applications. The per-

formance shown is applications’ stable behavior after the

initialization phase. Because our measurements use a large

amount of queries from production, these applications’ be-

haviors and characteristics are representative of real-world

execution.

In this section we conduct experiments when the applica-

tion is running alone to study the interaction within a multi-

threaded application with the underlying resource sharing

and the resulting performance variability. Three measure-

ments are conducted with three thread-to-core mappings:

{XXXX....}, {XX..XX..}, and {X.X.X.X.}. The performance

difference between mapping configurations demonstrates how

sharing LLC, sharing FSB, or sharing both can construc-

tively or destructively impact the performance of applica-

tions of interest. In each mapping, we use taskset to map

threads to cores. This allows us to study the resource shar-

ing outside of the default OS scheduler’s algorithm. This

methodology is shown to be valid for measuring the impact

of cache sharing by prior work [45]. Applications are pa-

rameterized to have a fixed load execute across 4 cores. All

experiments are run three times and the average measure-

ment is presented.

3.2 Measurement and Findings
Figure 6 demonstrates the performance variability due to

different TTC mappings for the latency sensitive applica-

tions presented in Table 1. For each applicaton, the x axis

shows the subset of cores the application is mapped to. The

y axis shows each application’s performance in each TTC

mapping scenario, normalized by its performance using the

mapping {X.X.X.X.}.
The results show that the performance impact of memory

resource sharing for these applications is significant, up to

22% for contentAnalyzer, 18% for bigtable and 8% for web-
Search. Secondly, each application prefers different shar-

ing configurations. Both contentAnalyzer and webSearch
prefer to run on separate LLCs and separate FSBs, the

mapping {X.X.X.X.} has 10% performance improvement for

webSearch and 20% for contentAnalyzer compared to map-

ping {XXXX....}, when all threads are on the same socket

sharing 2 LLCs and a single FSB. On the other hand, bigtable
achieves the best performance when running on the same

socket sharing 2 LLCs and a FSB, and the {X.X.X.X.} map-
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Table 2: Sharing configurations for sets of 2 cores and sets of 4 cores

# Cores LLC(L2) FSB set of cores

2 Cores
Share: 2 cores - 1 L2 Share: 2 cores - 1 FSB {0,1}, {2,3}, {4,5} {6,7}
Distribute: 2 x (1 core - 1 L2) Share: 2 cores - 1 FSB {0,2}, {1,3}, {4,6}, {5,7}
Distribute: 2 x (1 core - 1 L2) Distribute: 2 x (1 core - 1 FSB) {0,4},{0,5},{0,6},{0,7},{1,4},{1,5}...

4 Cores
Share: 2 x (2 cores - 1 L2) Share: 4 cores - 1 FSB {0,1,2,3}, {4,5,6,7}
Share: 2 x (2 cores - 1 L2) Distribute: 2 x (2 cores - 1 FSB) {0,1,4,5}, {2,3,6,7}
Distribute: 4 x (1 core - 1 L2) Distribute: 2 x (2 cores - 1 FSB) {0,2,4,6}, {1,3,5,7}

batch. This work focuses on the performance of the key

latency sensitive applications.

3. INTRA-APPLICATION SHARING
In this section, we investigate the performance impact of

memory resource sharing for three key datacenter applica-

tions. Experiments and measurement are conducted using

different thread-to-core (TTC) mappings to study the im-

pact of intra-application sharing, defined as resource sharing

among the threads of an individual multi-threaded applica-

tion.

3.1 Experiment Methodology
The primary platform used in this paper is a dual socket

Intel Clovertown (Xeon E5345), shown in Figure 1. Each

socket has 4 cores. Each 2 cores on the same socket are

sharing a 4MB 16 way last level cache (L2). The platform is

running Linux kernel version 2.6.26 and a customized GCC

4.4.3. We also conducted experiments on Intel Westmere,

which is presented in Section 4.3.

[Benchmarks, inputs and metrics] Table 1 presents

a detailed description of the five datacenter applications we

use in our study. In the datacenter latency-sensitive applica-

tions are either run alone on a machine or co-located with a

batch application to improve machine utilization. Our study

mirrors this execution policy as we focus on the latency-

sensitive applications shown in Table 1. Also, instead of

measuring instruction per cycle (IPC) or execution time, we

use each application’s specified performance metric in this

study. Application specific metrics more accurately describe

performance than application agnostic metrics such as IPC

[3]. The performance metrics are also shown in Table 1.

The load for each application is real world query traces in

production datacenters. A load generator is set up to test

the peak capacity behavior of these applications. The per-

formance shown is applications’ stable behavior after the

initialization phase. Because our measurements use a large

amount of queries from production, these applications’ be-

haviors and characteristics are representative of real-world

execution.

In this section we conduct experiments when the applica-

tion is running alone to study the interaction within a multi-

threaded application with the underlying resource sharing

and the resulting performance variability. Three measure-

ments are conducted with three thread-to-core mappings:

{XXXX....}, {XX..XX..}, and {X.X.X.X.}. The performance

difference between mapping configurations demonstrates how

sharing LLC, sharing FSB, or sharing both can construc-

tively or destructively impact the performance of applica-

tions of interest. In each mapping, we use taskset to map

threads to cores. This allows us to study the resource shar-

ing outside of the default OS scheduler’s algorithm. This

methodology is shown to be valid for measuring the impact

of cache sharing by prior work [45]. Applications are pa-

rameterized to have a fixed load execute across 4 cores. All

experiments are run three times and the average measure-

ment is presented.

3.2 Measurement and Findings
Figure 6 demonstrates the performance variability due to

different TTC mappings for the latency sensitive applica-

tions presented in Table 1. For each applicaton, the x axis

shows the subset of cores the application is mapped to. The

y axis shows each application’s performance in each TTC

mapping scenario, normalized by its performance using the

mapping {X.X.X.X.}.
The results show that the performance impact of memory

resource sharing for these applications is significant, up to

22% for contentAnalyzer, 18% for bigtable and 8% for web-
Search. Secondly, each application prefers different shar-

ing configurations. Both contentAnalyzer and webSearch
prefer to run on separate LLCs and separate FSBs, the

mapping {X.X.X.X.} has 10% performance improvement for

webSearch and 20% for contentAnalyzer compared to map-

ping {XXXX....}, when all threads are on the same socket

sharing 2 LLCs and a single FSB. On the other hand, bigtable
achieves the best performance when running on the same

socket sharing 2 LLCs and a FSB, and the {X.X.X.X.} map-
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Table 2: Sharing configurations for sets of 2 cores and sets of 4 cores

# Cores LLC(L2) FSB set of cores

2 Cores
Share: 2 cores - 1 L2 Share: 2 cores - 1 FSB {0,1}, {2,3}, {4,5} {6,7}
Distribute: 2 x (1 core - 1 L2) Share: 2 cores - 1 FSB {0,2}, {1,3}, {4,6}, {5,7}
Distribute: 2 x (1 core - 1 L2) Distribute: 2 x (1 core - 1 FSB) {0,4},{0,5},{0,6},{0,7},{1,4},{1,5}...

4 Cores
Share: 2 x (2 cores - 1 L2) Share: 4 cores - 1 FSB {0,1,2,3}, {4,5,6,7}
Share: 2 x (2 cores - 1 L2) Distribute: 2 x (2 cores - 1 FSB) {0,1,4,5}, {2,3,6,7}
Distribute: 4 x (1 core - 1 L2) Distribute: 2 x (2 cores - 1 FSB) {0,2,4,6}, {1,3,5,7}

batch. This work focuses on the performance of the key

latency sensitive applications.

3. INTRA-APPLICATION SHARING
In this section, we investigate the performance impact of

memory resource sharing for three key datacenter applica-

tions. Experiments and measurement are conducted using

different thread-to-core (TTC) mappings to study the im-

pact of intra-application sharing, defined as resource sharing

among the threads of an individual multi-threaded applica-

tion.

3.1 Experiment Methodology
The primary platform used in this paper is a dual socket

Intel Clovertown (Xeon E5345), shown in Figure 1. Each

socket has 4 cores. Each 2 cores on the same socket are

sharing a 4MB 16 way last level cache (L2). The platform is

running Linux kernel version 2.6.26 and a customized GCC

4.4.3. We also conducted experiments on Intel Westmere,

which is presented in Section 4.3.

[Benchmarks, inputs and metrics] Table 1 presents

a detailed description of the five datacenter applications we

use in our study. In the datacenter latency-sensitive applica-

tions are either run alone on a machine or co-located with a

batch application to improve machine utilization. Our study

mirrors this execution policy as we focus on the latency-

sensitive applications shown in Table 1. Also, instead of

measuring instruction per cycle (IPC) or execution time, we

use each application’s specified performance metric in this

study. Application specific metrics more accurately describe

performance than application agnostic metrics such as IPC

[3]. The performance metrics are also shown in Table 1.

The load for each application is real world query traces in

production datacenters. A load generator is set up to test

the peak capacity behavior of these applications. The per-

formance shown is applications’ stable behavior after the

initialization phase. Because our measurements use a large

amount of queries from production, these applications’ be-

haviors and characteristics are representative of real-world

execution.

In this section we conduct experiments when the applica-

tion is running alone to study the interaction within a multi-

threaded application with the underlying resource sharing

and the resulting performance variability. Three measure-

ments are conducted with three thread-to-core mappings:

{XXXX....}, {XX..XX..}, and {X.X.X.X.}. The performance

difference between mapping configurations demonstrates how

sharing LLC, sharing FSB, or sharing both can construc-

tively or destructively impact the performance of applica-

tions of interest. In each mapping, we use taskset to map

threads to cores. This allows us to study the resource shar-

ing outside of the default OS scheduler’s algorithm. This

methodology is shown to be valid for measuring the impact

of cache sharing by prior work [45]. Applications are pa-

rameterized to have a fixed load execute across 4 cores. All

experiments are run three times and the average measure-

ment is presented.

3.2 Measurement and Findings
Figure 6 demonstrates the performance variability due to

different TTC mappings for the latency sensitive applica-

tions presented in Table 1. For each applicaton, the x axis

shows the subset of cores the application is mapped to. The

y axis shows each application’s performance in each TTC

mapping scenario, normalized by its performance using the

mapping {X.X.X.X.}.
The results show that the performance impact of memory

resource sharing for these applications is significant, up to

22% for contentAnalyzer, 18% for bigtable and 8% for web-
Search. Secondly, each application prefers different shar-

ing configurations. Both contentAnalyzer and webSearch
prefer to run on separate LLCs and separate FSBs, the

mapping {X.X.X.X.} has 10% performance improvement for

webSearch and 20% for contentAnalyzer compared to map-

ping {XXXX....}, when all threads are on the same socket

sharing 2 LLCs and a single FSB. On the other hand, bigtable
achieves the best performance when running on the same

socket sharing 2 LLCs and a FSB, and the {X.X.X.X.} map-
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Table 2: Sharing configurations for sets of 2 cores and sets of 4 cores

# Cores LLC(L2) FSB set of cores

2 Cores
Share: 2 cores - 1 L2 Share: 2 cores - 1 FSB {0,1}, {2,3}, {4,5} {6,7}
Distribute: 2 x (1 core - 1 L2) Share: 2 cores - 1 FSB {0,2}, {1,3}, {4,6}, {5,7}
Distribute: 2 x (1 core - 1 L2) Distribute: 2 x (1 core - 1 FSB) {0,4},{0,5},{0,6},{0,7},{1,4},{1,5}...

4 Cores
Share: 2 x (2 cores - 1 L2) Share: 4 cores - 1 FSB {0,1,2,3}, {4,5,6,7}
Share: 2 x (2 cores - 1 L2) Distribute: 2 x (2 cores - 1 FSB) {0,1,4,5}, {2,3,6,7}
Distribute: 4 x (1 core - 1 L2) Distribute: 2 x (2 cores - 1 FSB) {0,2,4,6}, {1,3,5,7}

batch. This work focuses on the performance of the key

latency sensitive applications.

3. INTRA-APPLICATION SHARING
In this section, we investigate the performance impact of

memory resource sharing for three key datacenter applica-

tions. Experiments and measurement are conducted using

different thread-to-core (TTC) mappings to study the im-

pact of intra-application sharing, defined as resource sharing

among the threads of an individual multi-threaded applica-

tion.

3.1 Experiment Methodology
The primary platform used in this paper is a dual socket

Intel Clovertown (Xeon E5345), shown in Figure 1. Each

socket has 4 cores. Each 2 cores on the same socket are

sharing a 4MB 16 way last level cache (L2). The platform is

running Linux kernel version 2.6.26 and a customized GCC

4.4.3. We also conducted experiments on Intel Westmere,

which is presented in Section 4.3.

[Benchmarks, inputs and metrics] Table 1 presents

a detailed description of the five datacenter applications we

use in our study. In the datacenter latency-sensitive applica-

tions are either run alone on a machine or co-located with a

batch application to improve machine utilization. Our study

mirrors this execution policy as we focus on the latency-

sensitive applications shown in Table 1. Also, instead of

measuring instruction per cycle (IPC) or execution time, we

use each application’s specified performance metric in this

study. Application specific metrics more accurately describe

performance than application agnostic metrics such as IPC

[3]. The performance metrics are also shown in Table 1.

The load for each application is real world query traces in

production datacenters. A load generator is set up to test

the peak capacity behavior of these applications. The per-

formance shown is applications’ stable behavior after the

initialization phase. Because our measurements use a large

amount of queries from production, these applications’ be-

haviors and characteristics are representative of real-world

execution.

In this section we conduct experiments when the applica-

tion is running alone to study the interaction within a multi-

threaded application with the underlying resource sharing

and the resulting performance variability. Three measure-

ments are conducted with three thread-to-core mappings:

{XXXX....}, {XX..XX..}, and {X.X.X.X.}. The performance

difference between mapping configurations demonstrates how

sharing LLC, sharing FSB, or sharing both can construc-

tively or destructively impact the performance of applica-

tions of interest. In each mapping, we use taskset to map

threads to cores. This allows us to study the resource shar-

ing outside of the default OS scheduler’s algorithm. This

methodology is shown to be valid for measuring the impact

of cache sharing by prior work [45]. Applications are pa-

rameterized to have a fixed load execute across 4 cores. All

experiments are run three times and the average measure-

ment is presented.

3.2 Measurement and Findings
Figure 6 demonstrates the performance variability due to

different TTC mappings for the latency sensitive applica-

tions presented in Table 1. For each applicaton, the x axis

shows the subset of cores the application is mapped to. The

y axis shows each application’s performance in each TTC

mapping scenario, normalized by its performance using the

mapping {X.X.X.X.}.
The results show that the performance impact of memory

resource sharing for these applications is significant, up to

22% for contentAnalyzer, 18% for bigtable and 8% for web-
Search. Secondly, each application prefers different shar-

ing configurations. Both contentAnalyzer and webSearch
prefer to run on separate LLCs and separate FSBs, the

mapping {X.X.X.X.} has 10% performance improvement for

webSearch and 20% for contentAnalyzer compared to map-

ping {XXXX....}, when all threads are on the same socket

sharing 2 LLCs and a single FSB. On the other hand, bigtable
achieves the best performance when running on the same

socket sharing 2 LLCs and a FSB, and the {X.X.X.X.} map-
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applications based on the underlying sharing configurations
they prefer when it is running alone and running with other
applications. The categorization is shown in Table 3. This
table presents the optimal mapping for each application and
highlights the changes in mapping preferences in different
situations. In the table, S stands for ”shared” and D stands
for ”distributed”. In contrast to the conclusions about PAR-
SEC suite in prior work [45] (presented in Table 3’s last
row), our experiments demonstrate that industry-strength
datacenter applications have diverse preferences in resource
sharing and TTC mappings.

Summary: In this section, our experiments show that,
depending on the co-runner, sharing LLC and FSB with the
corunner can have a significant impact. An application’s
performance swing between its best and worst thread-to-
core mapping can be significant. Also, the optimal thread-
to-core mapping is different for each application and may
change when the application’s corunner changes. This result
indicates the importance of an intelligent system for thread-
to-core mapping that is aware of the underlying resource
topology and possible sharing configurations.

4.3 Impact of Varying Number of Threads
and Architecture

In this section we conduct experiments to evaluate whether
the above observations are also applicable when the number
of threads changes, or when architecture and memory topol-
ogy changes.

4.3.1 Varying Number of Threads
In this section, we study the impact of memory resource

sharing when the latency sensitive applications have 2 and 6
threads. All experiments are conducted on Clovertown de-
scribed in Section 3.1. Figure 16 presents the scenario when
each latency sensitive application is configured to have 2
threads. This figure presents the latency sensitive applica-
tion’s performance when it is running alone, co-located with
6 threads of stitcher, and co-located with 6 threads of pro-
tobuf. In the figure, we use C for contentAnalyzer, W for
webSearch, B for bigtable, S for stitcher and P for protobuf.
The y axis shows each of the three latency sensitive applica-
tions’ performance normalized by its performance when run-
ning alone in the {X...X...} mapping. Figure 17 presents
the scenario when each latency sensitive application is con-
figured to have 6 threads. In this figure, the performance
of each latency sensitive application is measured when it
is running alone, co-located with 2 threads of stitcher, and
co-located with 2 threads of protobuf.
In general, our results show that in both 2-thread and

6-thread cases, each application’s sharing preferences are
similar to its preferences in the 4-thread case. For exam-
ple, bigtable prefers sharing cache among its threads when
it has 2 threads, 4 threads and 6 threads. ContentAnalyzer
prefers sharing cache and FSB with its own thread when
running with stitcher and prefers distributing its threads
when running alone or with protobuf. For webSearch, when
running with stitcher, the optimal mapping is always shar-
ing with its own threads. Moreover, similar to the 4-thread
case, for each application, its optimal thread-to-core map-
ping changes when its co-runners change.
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applications based on the underlying sharing configurations
they prefer when it is running alone and running with other
applications. The categorization is shown in Table 3. This
table presents the optimal mapping for each application and
highlights the changes in mapping preferences in different
situations. In the table, S stands for ”shared” and D stands
for ”distributed”. In contrast to the conclusions about PAR-
SEC suite in prior work [45] (presented in Table 3’s last
row), our experiments demonstrate that industry-strength
datacenter applications have diverse preferences in resource
sharing and TTC mappings.

Summary: In this section, our experiments show that,
depending on the co-runner, sharing LLC and FSB with the
corunner can have a significant impact. An application’s
performance swing between its best and worst thread-to-
core mapping can be significant. Also, the optimal thread-
to-core mapping is different for each application and may
change when the application’s corunner changes. This result
indicates the importance of an intelligent system for thread-
to-core mapping that is aware of the underlying resource
topology and possible sharing configurations.

4.3 Impact of Varying Number of Threads
and Architecture

In this section we conduct experiments to evaluate whether
the above observations are also applicable when the number
of threads changes, or when architecture and memory topol-
ogy changes.

4.3.1 Varying Number of Threads
In this section, we study the impact of memory resource

sharing when the latency sensitive applications have 2 and 6
threads. All experiments are conducted on Clovertown de-
scribed in Section 3.1. Figure 16 presents the scenario when
each latency sensitive application is configured to have 2
threads. This figure presents the latency sensitive applica-
tion’s performance when it is running alone, co-located with
6 threads of stitcher, and co-located with 6 threads of pro-
tobuf. In the figure, we use C for contentAnalyzer, W for
webSearch, B for bigtable, S for stitcher and P for protobuf.
The y axis shows each of the three latency sensitive applica-
tions’ performance normalized by its performance when run-
ning alone in the {X...X...} mapping. Figure 17 presents
the scenario when each latency sensitive application is con-
figured to have 6 threads. In this figure, the performance
of each latency sensitive application is measured when it
is running alone, co-located with 2 threads of stitcher, and
co-located with 2 threads of protobuf.
In general, our results show that in both 2-thread and

6-thread cases, each application’s sharing preferences are
similar to its preferences in the 4-thread case. For exam-
ple, bigtable prefers sharing cache among its threads when
it has 2 threads, 4 threads and 6 threads. ContentAnalyzer
prefers sharing cache and FSB with its own thread when
running with stitcher and prefers distributing its threads
when running alone or with protobuf. For webSearch, when
running with stitcher, the optimal mapping is always shar-
ing with its own threads. Moreover, similar to the 4-thread
case, for each application, its optimal thread-to-core map-
ping changes when its co-runners change.
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applications based on the underlying sharing configurations
they prefer when it is running alone and running with other
applications. The categorization is shown in Table 3. This
table presents the optimal mapping for each application and
highlights the changes in mapping preferences in different
situations. In the table, S stands for ”shared” and D stands
for ”distributed”. In contrast to the conclusions about PAR-
SEC suite in prior work [45] (presented in Table 3’s last
row), our experiments demonstrate that industry-strength
datacenter applications have diverse preferences in resource
sharing and TTC mappings.

Summary: In this section, our experiments show that,
depending on the co-runner, sharing LLC and FSB with the
corunner can have a significant impact. An application’s
performance swing between its best and worst thread-to-
core mapping can be significant. Also, the optimal thread-
to-core mapping is different for each application and may
change when the application’s corunner changes. This result
indicates the importance of an intelligent system for thread-
to-core mapping that is aware of the underlying resource
topology and possible sharing configurations.

4.3 Impact of Varying Number of Threads
and Architecture

In this section we conduct experiments to evaluate whether
the above observations are also applicable when the number
of threads changes, or when architecture and memory topol-
ogy changes.

4.3.1 Varying Number of Threads
In this section, we study the impact of memory resource

sharing when the latency sensitive applications have 2 and 6
threads. All experiments are conducted on Clovertown de-
scribed in Section 3.1. Figure 16 presents the scenario when
each latency sensitive application is configured to have 2
threads. This figure presents the latency sensitive applica-
tion’s performance when it is running alone, co-located with
6 threads of stitcher, and co-located with 6 threads of pro-
tobuf. In the figure, we use C for contentAnalyzer, W for
webSearch, B for bigtable, S for stitcher and P for protobuf.
The y axis shows each of the three latency sensitive applica-
tions’ performance normalized by its performance when run-
ning alone in the {X...X...} mapping. Figure 17 presents
the scenario when each latency sensitive application is con-
figured to have 6 threads. In this figure, the performance
of each latency sensitive application is measured when it
is running alone, co-located with 2 threads of stitcher, and
co-located with 2 threads of protobuf.
In general, our results show that in both 2-thread and

6-thread cases, each application’s sharing preferences are
similar to its preferences in the 4-thread case. For exam-
ple, bigtable prefers sharing cache among its threads when
it has 2 threads, 4 threads and 6 threads. ContentAnalyzer
prefers sharing cache and FSB with its own thread when
running with stitcher and prefers distributing its threads
when running alone or with protobuf. For webSearch, when
running with stitcher, the optimal mapping is always shar-
ing with its own threads. Moreover, similar to the 4-thread
case, for each application, its optimal thread-to-core map-
ping changes when its co-runners change.
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applications based on the underlying sharing configurations
they prefer when it is running alone and running with other
applications. The categorization is shown in Table 3. This
table presents the optimal mapping for each application and
highlights the changes in mapping preferences in different
situations. In the table, S stands for ”shared” and D stands
for ”distributed”. In contrast to the conclusions about PAR-
SEC suite in prior work [45] (presented in Table 3’s last
row), our experiments demonstrate that industry-strength
datacenter applications have diverse preferences in resource
sharing and TTC mappings.

Summary: In this section, our experiments show that,
depending on the co-runner, sharing LLC and FSB with the
corunner can have a significant impact. An application’s
performance swing between its best and worst thread-to-
core mapping can be significant. Also, the optimal thread-
to-core mapping is different for each application and may
change when the application’s corunner changes. This result
indicates the importance of an intelligent system for thread-
to-core mapping that is aware of the underlying resource
topology and possible sharing configurations.

4.3 Impact of Varying Number of Threads
and Architecture

In this section we conduct experiments to evaluate whether
the above observations are also applicable when the number
of threads changes, or when architecture and memory topol-
ogy changes.

4.3.1 Varying Number of Threads
In this section, we study the impact of memory resource

sharing when the latency sensitive applications have 2 and 6
threads. All experiments are conducted on Clovertown de-
scribed in Section 3.1. Figure 16 presents the scenario when
each latency sensitive application is configured to have 2
threads. This figure presents the latency sensitive applica-
tion’s performance when it is running alone, co-located with
6 threads of stitcher, and co-located with 6 threads of pro-
tobuf. In the figure, we use C for contentAnalyzer, W for
webSearch, B for bigtable, S for stitcher and P for protobuf.
The y axis shows each of the three latency sensitive applica-
tions’ performance normalized by its performance when run-
ning alone in the {X...X...} mapping. Figure 17 presents
the scenario when each latency sensitive application is con-
figured to have 6 threads. In this figure, the performance
of each latency sensitive application is measured when it
is running alone, co-located with 2 threads of stitcher, and
co-located with 2 threads of protobuf.
In general, our results show that in both 2-thread and

6-thread cases, each application’s sharing preferences are
similar to its preferences in the 4-thread case. For exam-
ple, bigtable prefers sharing cache among its threads when
it has 2 threads, 4 threads and 6 threads. ContentAnalyzer
prefers sharing cache and FSB with its own thread when
running with stitcher and prefers distributing its threads
when running alone or with protobuf. For webSearch, when
running with stitcher, the optimal mapping is always shar-
ing with its own threads. Moreover, similar to the 4-thread
case, for each application, its optimal thread-to-core map-
ping changes when its co-runners change.
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applications based on the underlying sharing configurations
they prefer when it is running alone and running with other
applications. The categorization is shown in Table 3. This
table presents the optimal mapping for each application and
highlights the changes in mapping preferences in different
situations. In the table, S stands for ”shared” and D stands
for ”distributed”. In contrast to the conclusions about PAR-
SEC suite in prior work [45] (presented in Table 3’s last
row), our experiments demonstrate that industry-strength
datacenter applications have diverse preferences in resource
sharing and TTC mappings.

Summary: In this section, our experiments show that,
depending on the co-runner, sharing LLC and FSB with the
corunner can have a significant impact. An application’s
performance swing between its best and worst thread-to-
core mapping can be significant. Also, the optimal thread-
to-core mapping is different for each application and may
change when the application’s corunner changes. This result
indicates the importance of an intelligent system for thread-
to-core mapping that is aware of the underlying resource
topology and possible sharing configurations.

4.3 Impact of Varying Number of Threads
and Architecture

In this section we conduct experiments to evaluate whether
the above observations are also applicable when the number
of threads changes, or when architecture and memory topol-
ogy changes.

4.3.1 Varying Number of Threads
In this section, we study the impact of memory resource

sharing when the latency sensitive applications have 2 and 6
threads. All experiments are conducted on Clovertown de-
scribed in Section 3.1. Figure 16 presents the scenario when
each latency sensitive application is configured to have 2
threads. This figure presents the latency sensitive applica-
tion’s performance when it is running alone, co-located with
6 threads of stitcher, and co-located with 6 threads of pro-
tobuf. In the figure, we use C for contentAnalyzer, W for
webSearch, B for bigtable, S for stitcher and P for protobuf.
The y axis shows each of the three latency sensitive applica-
tions’ performance normalized by its performance when run-
ning alone in the {X...X...} mapping. Figure 17 presents
the scenario when each latency sensitive application is con-
figured to have 6 threads. In this figure, the performance
of each latency sensitive application is measured when it
is running alone, co-located with 2 threads of stitcher, and
co-located with 2 threads of protobuf.
In general, our results show that in both 2-thread and

6-thread cases, each application’s sharing preferences are
similar to its preferences in the 4-thread case. For exam-
ple, bigtable prefers sharing cache among its threads when
it has 2 threads, 4 threads and 6 threads. ContentAnalyzer
prefers sharing cache and FSB with its own thread when
running with stitcher and prefers distributing its threads
when running alone or with protobuf. For webSearch, when
running with stitcher, the optimal mapping is always shar-
ing with its own threads. Moreover, similar to the 4-thread
case, for each application, its optimal thread-to-core map-
ping changes when its co-runners change.
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applications based on the underlying sharing configurations
they prefer when it is running alone and running with other
applications. The categorization is shown in Table 3. This
table presents the optimal mapping for each application and
highlights the changes in mapping preferences in different
situations. In the table, S stands for ”shared” and D stands
for ”distributed”. In contrast to the conclusions about PAR-
SEC suite in prior work [45] (presented in Table 3’s last
row), our experiments demonstrate that industry-strength
datacenter applications have diverse preferences in resource
sharing and TTC mappings.

Summary: In this section, our experiments show that,
depending on the co-runner, sharing LLC and FSB with the
corunner can have a significant impact. An application’s
performance swing between its best and worst thread-to-
core mapping can be significant. Also, the optimal thread-
to-core mapping is different for each application and may
change when the application’s corunner changes. This result
indicates the importance of an intelligent system for thread-
to-core mapping that is aware of the underlying resource
topology and possible sharing configurations.

4.3 Impact of Varying Number of Threads
and Architecture

In this section we conduct experiments to evaluate whether
the above observations are also applicable when the number
of threads changes, or when architecture and memory topol-
ogy changes.

4.3.1 Varying Number of Threads
In this section, we study the impact of memory resource

sharing when the latency sensitive applications have 2 and 6
threads. All experiments are conducted on Clovertown de-
scribed in Section 3.1. Figure 16 presents the scenario when
each latency sensitive application is configured to have 2
threads. This figure presents the latency sensitive applica-
tion’s performance when it is running alone, co-located with
6 threads of stitcher, and co-located with 6 threads of pro-
tobuf. In the figure, we use C for contentAnalyzer, W for
webSearch, B for bigtable, S for stitcher and P for protobuf.
The y axis shows each of the three latency sensitive applica-
tions’ performance normalized by its performance when run-
ning alone in the {X...X...} mapping. Figure 17 presents
the scenario when each latency sensitive application is con-
figured to have 6 threads. In this figure, the performance
of each latency sensitive application is measured when it
is running alone, co-located with 2 threads of stitcher, and
co-located with 2 threads of protobuf.
In general, our results show that in both 2-thread and

6-thread cases, each application’s sharing preferences are
similar to its preferences in the 4-thread case. For exam-
ple, bigtable prefers sharing cache among its threads when
it has 2 threads, 4 threads and 6 threads. ContentAnalyzer
prefers sharing cache and FSB with its own thread when
running with stitcher and prefers distributing its threads
when running alone or with protobuf. For webSearch, when
running with stitcher, the optimal mapping is always shar-
ing with its own threads. Moreover, similar to the 4-thread
case, for each application, its optimal thread-to-core map-
ping changes when its co-runners change.
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highlights the changes in mapping preferences in different
situations. In the table, S stands for ”shared” and D stands
for ”distributed”. In contrast to the conclusions about PAR-
SEC suite in prior work [45] (presented in Table 3’s last
row), our experiments demonstrate that industry-strength
datacenter applications have diverse preferences in resource
sharing and TTC mappings.

Summary: In this section, our experiments show that,
depending on the co-runner, sharing LLC and FSB with the
corunner can have a significant impact. An application’s
performance swing between its best and worst thread-to-
core mapping can be significant. Also, the optimal thread-
to-core mapping is different for each application and may
change when the application’s corunner changes. This result
indicates the importance of an intelligent system for thread-
to-core mapping that is aware of the underlying resource
topology and possible sharing configurations.

4.3 Varying Thread Count and Architecture
In this section, we describe experiments to evaluate whether

the above observations are also applicable when the number
of threads, the architecture or the memory topology changes.

4.3.1 Varying Number of Threads
We studied the impact of memory resource sharing when

the latency sensitive applications have 2 and 6 threads. All
experiments are conducted on Clovertown described in Sec-
tion 3.1. Figure 16 presents the scenario when each la-
tency sensitive application is configured to have 2 threads.
This figure presents the latency sensitive application’s per-
formance when it is running alone, co-located with 6 threads

of stitcher, and co-located with 6 threads of protobuf. In the
figure, we use C for contentAnalyzer, W for webSearch, B
for bigtable, S for stitcher and P for protobuf. The y axis
shows each of the three latency sensitive applications’ perfor-
mances normalized by the performance when running alone
in the {X...X...} mapping. Figure 17 presents the sce-
nario when each latency sensitive application is configured
to have 6 threads. In this figure, the performance of each
latency sensitive application is measured when it is running
alone, co-located with 2 threads of stitcher, and co-located
with 2 threads of protobuf.

In general, our results show that in both 2-thread and
6-thread cases, each application’s sharing preferences are
similar to its preferences in the 4-thread case. For exam-
ple, bigtable prefers sharing cache among its threads when
it has 2 threads, 4 threads and 6 threads. ContentAnalyzer
prefers sharing cache and FSB with its own thread when
running with stitcher and prefers distributing its threads
when running alone or with protobuf. For webSearch, when
running with stitcher, the optimal mapping is always shar-
ing with its own threads. Moreover, similar to the 4-thread
case, for each application, its optimal thread-to-core map-
ping changes when its co-runners change.

4.3.2 Varying Architecture
We also conducted experiments on a Intel’s Westmere

platform. Our experiment platform is a dual-socket Intel
Xeon X5660. Each socket has 6 cores. The memory topology
of this architecture is quite different from Clovertown used
in previous sections. All six cores on the same socket share
a 12 MB last level cache. Each chip has its own integrated
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highlights the changes in mapping preferences in different
situations. In the table, S stands for ”shared” and D stands
for ”distributed”. In contrast to the conclusions about PAR-
SEC suite in prior work [45] (presented in Table 3’s last
row), our experiments demonstrate that industry-strength
datacenter applications have diverse preferences in resource
sharing and TTC mappings.

Summary: In this section, our experiments show that,
depending on the co-runner, sharing LLC and FSB with the
corunner can have a significant impact. An application’s
performance swing between its best and worst thread-to-
core mapping can be significant. Also, the optimal thread-
to-core mapping is different for each application and may
change when the application’s corunner changes. This result
indicates the importance of an intelligent system for thread-
to-core mapping that is aware of the underlying resource
topology and possible sharing configurations.

4.3 Varying Thread Count and Architecture
In this section, we describe experiments to evaluate whether

the above observations are also applicable when the number
of threads, the architecture or the memory topology changes.

4.3.1 Varying Number of Threads
We studied the impact of memory resource sharing when

the latency sensitive applications have 2 and 6 threads. All
experiments are conducted on Clovertown described in Sec-
tion 3.1. Figure 16 presents the scenario when each la-
tency sensitive application is configured to have 2 threads.
This figure presents the latency sensitive application’s per-
formance when it is running alone, co-located with 6 threads

of stitcher, and co-located with 6 threads of protobuf. In the
figure, we use C for contentAnalyzer, W for webSearch, B
for bigtable, S for stitcher and P for protobuf. The y axis
shows each of the three latency sensitive applications’ perfor-
mances normalized by the performance when running alone
in the {X...X...} mapping. Figure 17 presents the sce-
nario when each latency sensitive application is configured
to have 6 threads. In this figure, the performance of each
latency sensitive application is measured when it is running
alone, co-located with 2 threads of stitcher, and co-located
with 2 threads of protobuf.

In general, our results show that in both 2-thread and
6-thread cases, each application’s sharing preferences are
similar to its preferences in the 4-thread case. For exam-
ple, bigtable prefers sharing cache among its threads when
it has 2 threads, 4 threads and 6 threads. ContentAnalyzer
prefers sharing cache and FSB with its own thread when
running with stitcher and prefers distributing its threads
when running alone or with protobuf. For webSearch, when
running with stitcher, the optimal mapping is always shar-
ing with its own threads. Moreover, similar to the 4-thread
case, for each application, its optimal thread-to-core map-
ping changes when its co-runners change.

4.3.2 Varying Architecture
We also conducted experiments on a Intel’s Westmere

platform. Our experiment platform is a dual-socket Intel
Xeon X5660. Each socket has 6 cores. The memory topology
of this architecture is quite different from Clovertown used
in previous sections. All six cores on the same socket share
a 12 MB last level cache. Each chip has its own integrated
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highlights the changes in mapping preferences in different
situations. In the table, S stands for ”shared” and D stands
for ”distributed”. In contrast to the conclusions about PAR-
SEC suite in prior work [45] (presented in Table 3’s last
row), our experiments demonstrate that industry-strength
datacenter applications have diverse preferences in resource
sharing and TTC mappings.

Summary: In this section, our experiments show that,
depending on the co-runner, sharing LLC and FSB with the
corunner can have a significant impact. An application’s
performance swing between its best and worst thread-to-
core mapping can be significant. Also, the optimal thread-
to-core mapping is different for each application and may
change when the application’s corunner changes. This result
indicates the importance of an intelligent system for thread-
to-core mapping that is aware of the underlying resource
topology and possible sharing configurations.

4.3 Varying Thread Count and Architecture
In this section, we describe experiments to evaluate whether

the above observations are also applicable when the number
of threads, the architecture or the memory topology changes.

4.3.1 Varying Number of Threads
We studied the impact of memory resource sharing when

the latency sensitive applications have 2 and 6 threads. All
experiments are conducted on Clovertown described in Sec-
tion 3.1. Figure 16 presents the scenario when each la-
tency sensitive application is configured to have 2 threads.
This figure presents the latency sensitive application’s per-
formance when it is running alone, co-located with 6 threads

of stitcher, and co-located with 6 threads of protobuf. In the
figure, we use C for contentAnalyzer, W for webSearch, B
for bigtable, S for stitcher and P for protobuf. The y axis
shows each of the three latency sensitive applications’ perfor-
mances normalized by the performance when running alone
in the {X...X...} mapping. Figure 17 presents the sce-
nario when each latency sensitive application is configured
to have 6 threads. In this figure, the performance of each
latency sensitive application is measured when it is running
alone, co-located with 2 threads of stitcher, and co-located
with 2 threads of protobuf.

In general, our results show that in both 2-thread and
6-thread cases, each application’s sharing preferences are
similar to its preferences in the 4-thread case. For exam-
ple, bigtable prefers sharing cache among its threads when
it has 2 threads, 4 threads and 6 threads. ContentAnalyzer
prefers sharing cache and FSB with its own thread when
running with stitcher and prefers distributing its threads
when running alone or with protobuf. For webSearch, when
running with stitcher, the optimal mapping is always shar-
ing with its own threads. Moreover, similar to the 4-thread
case, for each application, its optimal thread-to-core map-
ping changes when its co-runners change.

4.3.2 Varying Architecture
We also conducted experiments on a Intel’s Westmere

platform. Our experiment platform is a dual-socket Intel
Xeon X5660. Each socket has 6 cores. The memory topology
of this architecture is quite different from Clovertown used
in previous sections. All six cores on the same socket share
a 12 MB last level cache. Each chip has its own integrated
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highlights the changes in mapping preferences in different
situations. In the table, S stands for ”shared” and D stands
for ”distributed”. In contrast to the conclusions about PAR-
SEC suite in prior work [45] (presented in Table 3’s last
row), our experiments demonstrate that industry-strength
datacenter applications have diverse preferences in resource
sharing and TTC mappings.

Summary: In this section, our experiments show that,
depending on the co-runner, sharing LLC and FSB with the
corunner can have a significant impact. An application’s
performance swing between its best and worst thread-to-
core mapping can be significant. Also, the optimal thread-
to-core mapping is different for each application and may
change when the application’s corunner changes. This result
indicates the importance of an intelligent system for thread-
to-core mapping that is aware of the underlying resource
topology and possible sharing configurations.

4.3 Varying Thread Count and Architecture
In this section, we describe experiments to evaluate whether

the above observations are also applicable when the number
of threads, the architecture or the memory topology changes.

4.3.1 Varying Number of Threads
We studied the impact of memory resource sharing when

the latency sensitive applications have 2 and 6 threads. All
experiments are conducted on Clovertown described in Sec-
tion 3.1. Figure 16 presents the scenario when each la-
tency sensitive application is configured to have 2 threads.
This figure presents the latency sensitive application’s per-
formance when it is running alone, co-located with 6 threads

of stitcher, and co-located with 6 threads of protobuf. In the
figure, we use C for contentAnalyzer, W for webSearch, B
for bigtable, S for stitcher and P for protobuf. The y axis
shows each of the three latency sensitive applications’ perfor-
mances normalized by the performance when running alone
in the {X...X...} mapping. Figure 17 presents the sce-
nario when each latency sensitive application is configured
to have 6 threads. In this figure, the performance of each
latency sensitive application is measured when it is running
alone, co-located with 2 threads of stitcher, and co-located
with 2 threads of protobuf.

In general, our results show that in both 2-thread and
6-thread cases, each application’s sharing preferences are
similar to its preferences in the 4-thread case. For exam-
ple, bigtable prefers sharing cache among its threads when
it has 2 threads, 4 threads and 6 threads. ContentAnalyzer
prefers sharing cache and FSB with its own thread when
running with stitcher and prefers distributing its threads
when running alone or with protobuf. For webSearch, when
running with stitcher, the optimal mapping is always shar-
ing with its own threads. Moreover, similar to the 4-thread
case, for each application, its optimal thread-to-core map-
ping changes when its co-runners change.

4.3.2 Varying Architecture
We also conducted experiments on a Intel’s Westmere

platform. Our experiment platform is a dual-socket Intel
Xeon X5660. Each socket has 6 cores. The memory topology
of this architecture is quite different from Clovertown used
in previous sections. All six cores on the same socket share
a 12 MB last level cache. Each chip has its own integrated
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highlights the changes in mapping preferences in different
situations. In the table, S stands for ”shared” and D stands
for ”distributed”. In contrast to the conclusions about PAR-
SEC suite in prior work [45] (presented in Table 3’s last
row), our experiments demonstrate that industry-strength
datacenter applications have diverse preferences in resource
sharing and TTC mappings.

Summary: In this section, our experiments show that,
depending on the co-runner, sharing LLC and FSB with the
corunner can have a significant impact. An application’s
performance swing between its best and worst thread-to-
core mapping can be significant. Also, the optimal thread-
to-core mapping is different for each application and may
change when the application’s corunner changes. This result
indicates the importance of an intelligent system for thread-
to-core mapping that is aware of the underlying resource
topology and possible sharing configurations.

4.3 Varying Thread Count and Architecture
In this section, we describe experiments to evaluate whether

the above observations are also applicable when the number
of threads, the architecture or the memory topology changes.

4.3.1 Varying Number of Threads
We studied the impact of memory resource sharing when

the latency sensitive applications have 2 and 6 threads. All
experiments are conducted on Clovertown described in Sec-
tion 3.1. Figure 16 presents the scenario when each la-
tency sensitive application is configured to have 2 threads.
This figure presents the latency sensitive application’s per-
formance when it is running alone, co-located with 6 threads

of stitcher, and co-located with 6 threads of protobuf. In the
figure, we use C for contentAnalyzer, W for webSearch, B
for bigtable, S for stitcher and P for protobuf. The y axis
shows each of the three latency sensitive applications’ perfor-
mances normalized by the performance when running alone
in the {X...X...} mapping. Figure 17 presents the sce-
nario when each latency sensitive application is configured
to have 6 threads. In this figure, the performance of each
latency sensitive application is measured when it is running
alone, co-located with 2 threads of stitcher, and co-located
with 2 threads of protobuf.

In general, our results show that in both 2-thread and
6-thread cases, each application’s sharing preferences are
similar to its preferences in the 4-thread case. For exam-
ple, bigtable prefers sharing cache among its threads when
it has 2 threads, 4 threads and 6 threads. ContentAnalyzer
prefers sharing cache and FSB with its own thread when
running with stitcher and prefers distributing its threads
when running alone or with protobuf. For webSearch, when
running with stitcher, the optimal mapping is always shar-
ing with its own threads. Moreover, similar to the 4-thread
case, for each application, its optimal thread-to-core map-
ping changes when its co-runners change.

4.3.2 Varying Architecture
We also conducted experiments on a Intel’s Westmere

platform. Our experiment platform is a dual-socket Intel
Xeon X5660. Each socket has 6 cores. The memory topology
of this architecture is quite different from Clovertown used
in previous sections. All six cores on the same socket share
a 12 MB last level cache. Each chip has its own integrated
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highlights the changes in mapping preferences in different
situations. In the table, S stands for ”shared” and D stands
for ”distributed”. In contrast to the conclusions about PAR-
SEC suite in prior work [45] (presented in Table 3’s last
row), our experiments demonstrate that industry-strength
datacenter applications have diverse preferences in resource
sharing and TTC mappings.

Summary: In this section, our experiments show that,
depending on the co-runner, sharing LLC and FSB with the
corunner can have a significant impact. An application’s
performance swing between its best and worst thread-to-
core mapping can be significant. Also, the optimal thread-
to-core mapping is different for each application and may
change when the application’s corunner changes. This result
indicates the importance of an intelligent system for thread-
to-core mapping that is aware of the underlying resource
topology and possible sharing configurations.

4.3 Varying Thread Count and Architecture
In this section, we describe experiments to evaluate whether

the above observations are also applicable when the number
of threads, the architecture or the memory topology changes.

4.3.1 Varying Number of Threads
We studied the impact of memory resource sharing when

the latency sensitive applications have 2 and 6 threads. All
experiments are conducted on Clovertown described in Sec-
tion 3.1. Figure 16 presents the scenario when each la-
tency sensitive application is configured to have 2 threads.
This figure presents the latency sensitive application’s per-
formance when it is running alone, co-located with 6 threads

of stitcher, and co-located with 6 threads of protobuf. In the
figure, we use C for contentAnalyzer, W for webSearch, B
for bigtable, S for stitcher and P for protobuf. The y axis
shows each of the three latency sensitive applications’ perfor-
mances normalized by the performance when running alone
in the {X...X...} mapping. Figure 17 presents the sce-
nario when each latency sensitive application is configured
to have 6 threads. In this figure, the performance of each
latency sensitive application is measured when it is running
alone, co-located with 2 threads of stitcher, and co-located
with 2 threads of protobuf.

In general, our results show that in both 2-thread and
6-thread cases, each application’s sharing preferences are
similar to its preferences in the 4-thread case. For exam-
ple, bigtable prefers sharing cache among its threads when
it has 2 threads, 4 threads and 6 threads. ContentAnalyzer
prefers sharing cache and FSB with its own thread when
running with stitcher and prefers distributing its threads
when running alone or with protobuf. For webSearch, when
running with stitcher, the optimal mapping is always shar-
ing with its own threads. Moreover, similar to the 4-thread
case, for each application, its optimal thread-to-core map-
ping changes when its co-runners change.

4.3.2 Varying Architecture
We also conducted experiments on a Intel’s Westmere

platform. Our experiment platform is a dual-socket Intel
Xeon X5660. Each socket has 6 cores. The memory topology
of this architecture is quite different from Clovertown used
in previous sections. All six cores on the same socket share
a 12 MB last level cache. Each chip has its own integrated
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highlights the changes in mapping preferences in different
situations. In the table, S stands for ”shared” and D stands
for ”distributed”. In contrast to the conclusions about PAR-
SEC suite in prior work [45] (presented in Table 3’s last
row), our experiments demonstrate that industry-strength
datacenter applications have diverse preferences in resource
sharing and TTC mappings.

Summary: In this section, our experiments show that,
depending on the co-runner, sharing LLC and FSB with the
corunner can have a significant impact. An application’s
performance swing between its best and worst thread-to-
core mapping can be significant. Also, the optimal thread-
to-core mapping is different for each application and may
change when the application’s corunner changes. This result
indicates the importance of an intelligent system for thread-
to-core mapping that is aware of the underlying resource
topology and possible sharing configurations.

4.3 Varying Thread Count and Architecture
In this section, we describe experiments to evaluate whether

the above observations are also applicable when the number
of threads, the architecture or the memory topology changes.

4.3.1 Varying Number of Threads
We studied the impact of memory resource sharing when

the latency sensitive applications have 2 and 6 threads. All
experiments are conducted on Clovertown described in Sec-
tion 3.1. Figure 16 presents the scenario when each la-
tency sensitive application is configured to have 2 threads.
This figure presents the latency sensitive application’s per-
formance when it is running alone, co-located with 6 threads

of stitcher, and co-located with 6 threads of protobuf. In the
figure, we use C for contentAnalyzer, W for webSearch, B
for bigtable, S for stitcher and P for protobuf. The y axis
shows each of the three latency sensitive applications’ perfor-
mances normalized by the performance when running alone
in the {X...X...} mapping. Figure 17 presents the sce-
nario when each latency sensitive application is configured
to have 6 threads. In this figure, the performance of each
latency sensitive application is measured when it is running
alone, co-located with 2 threads of stitcher, and co-located
with 2 threads of protobuf.

In general, our results show that in both 2-thread and
6-thread cases, each application’s sharing preferences are
similar to its preferences in the 4-thread case. For exam-
ple, bigtable prefers sharing cache among its threads when
it has 2 threads, 4 threads and 6 threads. ContentAnalyzer
prefers sharing cache and FSB with its own thread when
running with stitcher and prefers distributing its threads
when running alone or with protobuf. For webSearch, when
running with stitcher, the optimal mapping is always shar-
ing with its own threads. Moreover, similar to the 4-thread
case, for each application, its optimal thread-to-core map-
ping changes when its co-runners change.

4.3.2 Varying Architecture
We also conducted experiments on a Intel’s Westmere

platform. Our experiment platform is a dual-socket Intel
Xeon X5660. Each socket has 6 cores. The memory topology
of this architecture is quite different from Clovertown used
in previous sections. All six cores on the same socket share
a 12 MB last level cache. Each chip has its own integrated

Content Analyzer Websearch Bigtable

16 Lingjia Tang: lt8f@cs.virginia.edu

16Friday, June 10, 2011

mailto:lt8f@cs.virginia.edu
mailto:lt8f@cs.virginia.edu


Inter-application Sharing

Optimal mapping changes when co-runner changes

Difference can be significant

  0.5x

  0.6x

  0.7x

  0.8x

  0.9x

  1x

  1.1x

  1.2x

+stitcher +protobuf
P

er
fo

rm
an

ce
 

{X*X*X*X*}: D−LLC, D−FSB
{XX**XX**}: S−LLC, D−FSB
{XXXX****}: S−LLC, S−FSB

Figure 10: ContentAnalyzer. Nor-
malized to solo performance

  0.5x

  0.6x

  0.7x

  0.8x

  0.9x

  1x

  1.1x

  1.2x

+stitcher +protobuf

P
er

fo
rm

an
ce

 

{X*X*X*X*}: D−LLC, D−FSB
{XX**XX**}: S−LLC, D−FSB
{XXXX****}: S−LLC, S−FSB

Figure 11: Websearch. Normal-
ized to solo performance

  0.5x

  0.6x

  0.7x

  0.8x

  0.9x

  1x

  1.1x

  1.2x

+stitcher +protobuf

P
er

fo
rm

an
ce

 

{X*X*X*X*}: D−LLC, D−FSB
{XX**XX**}: S−LLC, D−FSB
{XXXX****}: S−LLC, S−FSB

Figure 12: Bigtable. Normalized
to solo performance

  0.5x

  0.6x

  0.7x

  0.8x

  0.9x

  1x

  1.1x

  1.2x

solo +stitcher +protobuf

P
er

fo
rm

an
ce

 

{X*X*X*X*}: D−LLC, D−FSB
{XX**XX**}: S−LLC, D−FSB
{XXXX****}: S−LLC, S−FSB

Figure 13: ContentAnalyzer. Nor-
malized to solo performance with
{X.X.X.X.}

  0.5x

  0.6x

  0.7x

  0.8x

  0.9x

  1x

  1.1x

  1.2x

solo +stitcher +protobuf
P

er
fo

rm
an

ce
 

{X*X*X*X*}: D−LLC, D−FSB
{XX**XX**}: S−LLC, D−FSB
{XXXX****}: S−LLC, S−FSB

Figure 14: Websearch. Nor-
malized to solo performance with
{X.X.X.X.}

  0.5x

  0.6x

  0.7x

  0.8x

  0.9x

  1x

  1.1x

  1.2x

solo +stitcher +protobuf

P
er

fo
rm

an
ce

 

{X*X*X*X*}: D−LLC, D−FSB
{XX**XX**}: S−LLC, D−FSB
{XXXX****}: S−LLC, S−FSB

Figure 15: Bigtable. Normal-
ized to solo performance with
{X.X.X.X.}

highlights the changes in mapping preferences in different
situations. In the table, S stands for ”shared” and D stands
for ”distributed”. In contrast to the conclusions about PAR-
SEC suite in prior work [45] (presented in Table 3’s last
row), our experiments demonstrate that industry-strength
datacenter applications have diverse preferences in resource
sharing and TTC mappings.

Summary: In this section, our experiments show that,
depending on the co-runner, sharing LLC and FSB with the
corunner can have a significant impact. An application’s
performance swing between its best and worst thread-to-
core mapping can be significant. Also, the optimal thread-
to-core mapping is different for each application and may
change when the application’s corunner changes. This result
indicates the importance of an intelligent system for thread-
to-core mapping that is aware of the underlying resource
topology and possible sharing configurations.

4.3 Varying Thread Count and Architecture
In this section, we describe experiments to evaluate whether

the above observations are also applicable when the number
of threads, the architecture or the memory topology changes.

4.3.1 Varying Number of Threads
We studied the impact of memory resource sharing when

the latency sensitive applications have 2 and 6 threads. All
experiments are conducted on Clovertown described in Sec-
tion 3.1. Figure 16 presents the scenario when each la-
tency sensitive application is configured to have 2 threads.
This figure presents the latency sensitive application’s per-
formance when it is running alone, co-located with 6 threads

of stitcher, and co-located with 6 threads of protobuf. In the
figure, we use C for contentAnalyzer, W for webSearch, B
for bigtable, S for stitcher and P for protobuf. The y axis
shows each of the three latency sensitive applications’ perfor-
mances normalized by the performance when running alone
in the {X...X...} mapping. Figure 17 presents the sce-
nario when each latency sensitive application is configured
to have 6 threads. In this figure, the performance of each
latency sensitive application is measured when it is running
alone, co-located with 2 threads of stitcher, and co-located
with 2 threads of protobuf.

In general, our results show that in both 2-thread and
6-thread cases, each application’s sharing preferences are
similar to its preferences in the 4-thread case. For exam-
ple, bigtable prefers sharing cache among its threads when
it has 2 threads, 4 threads and 6 threads. ContentAnalyzer
prefers sharing cache and FSB with its own thread when
running with stitcher and prefers distributing its threads
when running alone or with protobuf. For webSearch, when
running with stitcher, the optimal mapping is always shar-
ing with its own threads. Moreover, similar to the 4-thread
case, for each application, its optimal thread-to-core map-
ping changes when its co-runners change.

4.3.2 Varying Architecture
We also conducted experiments on a Intel’s Westmere

platform. Our experiment platform is a dual-socket Intel
Xeon X5660. Each socket has 6 cores. The memory topology
of this architecture is quite different from Clovertown used
in previous sections. All six cores on the same socket share
a 12 MB last level cache. Each chip has its own integrated
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highlights the changes in mapping preferences in different
situations. In the table, S stands for ”shared” and D stands
for ”distributed”. In contrast to the conclusions about PAR-
SEC suite in prior work [45] (presented in Table 3’s last
row), our experiments demonstrate that industry-strength
datacenter applications have diverse preferences in resource
sharing and TTC mappings.

Summary: In this section, our experiments show that,
depending on the co-runner, sharing LLC and FSB with the
corunner can have a significant impact. An application’s
performance swing between its best and worst thread-to-
core mapping can be significant. Also, the optimal thread-
to-core mapping is different for each application and may
change when the application’s corunner changes. This result
indicates the importance of an intelligent system for thread-
to-core mapping that is aware of the underlying resource
topology and possible sharing configurations.

4.3 Varying Thread Count and Architecture
In this section, we describe experiments to evaluate whether

the above observations are also applicable when the number
of threads, the architecture or the memory topology changes.

4.3.1 Varying Number of Threads
We studied the impact of memory resource sharing when

the latency sensitive applications have 2 and 6 threads. All
experiments are conducted on Clovertown described in Sec-
tion 3.1. Figure 16 presents the scenario when each la-
tency sensitive application is configured to have 2 threads.
This figure presents the latency sensitive application’s per-
formance when it is running alone, co-located with 6 threads

of stitcher, and co-located with 6 threads of protobuf. In the
figure, we use C for contentAnalyzer, W for webSearch, B
for bigtable, S for stitcher and P for protobuf. The y axis
shows each of the three latency sensitive applications’ perfor-
mances normalized by the performance when running alone
in the {X...X...} mapping. Figure 17 presents the sce-
nario when each latency sensitive application is configured
to have 6 threads. In this figure, the performance of each
latency sensitive application is measured when it is running
alone, co-located with 2 threads of stitcher, and co-located
with 2 threads of protobuf.

In general, our results show that in both 2-thread and
6-thread cases, each application’s sharing preferences are
similar to its preferences in the 4-thread case. For exam-
ple, bigtable prefers sharing cache among its threads when
it has 2 threads, 4 threads and 6 threads. ContentAnalyzer
prefers sharing cache and FSB with its own thread when
running with stitcher and prefers distributing its threads
when running alone or with protobuf. For webSearch, when
running with stitcher, the optimal mapping is always shar-
ing with its own threads. Moreover, similar to the 4-thread
case, for each application, its optimal thread-to-core map-
ping changes when its co-runners change.

4.3.2 Varying Architecture
We also conducted experiments on a Intel’s Westmere

platform. Our experiment platform is a dual-socket Intel
Xeon X5660. Each socket has 6 cores. The memory topology
of this architecture is quite different from Clovertown used
in previous sections. All six cores on the same socket share
a 12 MB last level cache. Each chip has its own integrated
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highlights the changes in mapping preferences in different
situations. In the table, S stands for ”shared” and D stands
for ”distributed”. In contrast to the conclusions about PAR-
SEC suite in prior work [45] (presented in Table 3’s last
row), our experiments demonstrate that industry-strength
datacenter applications have diverse preferences in resource
sharing and TTC mappings.

Summary: In this section, our experiments show that,
depending on the co-runner, sharing LLC and FSB with the
corunner can have a significant impact. An application’s
performance swing between its best and worst thread-to-
core mapping can be significant. Also, the optimal thread-
to-core mapping is different for each application and may
change when the application’s corunner changes. This result
indicates the importance of an intelligent system for thread-
to-core mapping that is aware of the underlying resource
topology and possible sharing configurations.

4.3 Varying Thread Count and Architecture
In this section, we describe experiments to evaluate whether

the above observations are also applicable when the number
of threads, the architecture or the memory topology changes.

4.3.1 Varying Number of Threads
We studied the impact of memory resource sharing when

the latency sensitive applications have 2 and 6 threads. All
experiments are conducted on Clovertown described in Sec-
tion 3.1. Figure 16 presents the scenario when each la-
tency sensitive application is configured to have 2 threads.
This figure presents the latency sensitive application’s per-
formance when it is running alone, co-located with 6 threads

of stitcher, and co-located with 6 threads of protobuf. In the
figure, we use C for contentAnalyzer, W for webSearch, B
for bigtable, S for stitcher and P for protobuf. The y axis
shows each of the three latency sensitive applications’ perfor-
mances normalized by the performance when running alone
in the {X...X...} mapping. Figure 17 presents the sce-
nario when each latency sensitive application is configured
to have 6 threads. In this figure, the performance of each
latency sensitive application is measured when it is running
alone, co-located with 2 threads of stitcher, and co-located
with 2 threads of protobuf.

In general, our results show that in both 2-thread and
6-thread cases, each application’s sharing preferences are
similar to its preferences in the 4-thread case. For exam-
ple, bigtable prefers sharing cache among its threads when
it has 2 threads, 4 threads and 6 threads. ContentAnalyzer
prefers sharing cache and FSB with its own thread when
running with stitcher and prefers distributing its threads
when running alone or with protobuf. For webSearch, when
running with stitcher, the optimal mapping is always shar-
ing with its own threads. Moreover, similar to the 4-thread
case, for each application, its optimal thread-to-core map-
ping changes when its co-runners change.

4.3.2 Varying Architecture
We also conducted experiments on a Intel’s Westmere

platform. Our experiment platform is a dual-socket Intel
Xeon X5660. Each socket has 6 cores. The memory topology
of this architecture is quite different from Clovertown used
in previous sections. All six cores on the same socket share
a 12 MB last level cache. Each chip has its own integrated
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Varying Number of  Threads and ArchitectureTable 3: Optimal Thread-To-Core Mapping in Solo and Co-location Situations

Benchmark Solo w/ Stitcher w/ Protobuf

bigtable {XXXX....}: S-LLC, S-FSB {XXXX****}: S-LLC, S-FSB {XXXX****}: S-LLC, S-FSB
contentAnalyzer {X.X.X.X.}: D-LLC, D-FSB {XXXX****}: S-LLC, S-FSB {X*X*X*X*}: D-LLC, D-FSB
webSearch {X.X.X.X.}: D-LLC, D-FSB {XXXX****}: S-LLC, S-FSB {XX**XX**}: S-LLC, D-FSB
PARSEC does not matter N/A N/A
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Figure 16: 2 threads of a latency sensitive applica-
tion colocated with 6 threads of a batch application,
normalized to the latency sensitive application’s solo
performance in {X...X...} mapping
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Figure 17: 6 threads of a latency sensitive applica-
tion colocated with 2 threads of a batch application,
normalized to the latency sensitive application’s solo
performance in {XXX.,XXX.} mapping

memory controller, and has 3 channels of 8.5GB/s/channel
bus connecting to DIMM. Processors are connected through
QuickPath interconnect (QPI). We conduct experiments to
evaluate the performance impact of sharing the LLC and
memory bandwidth on the same socket versus distributing
threads to two sockets for our three key latency sensitive
datacenter applications. Figures 18 and 19 present the re-
sults when each application is running alone with 2 threads
and 6 threads. We use a similar notation to present the
thread-to-core mapping. For example, {X.....X.....} in-
dicates two threads are mapped to two different sockets on
this architecture. In both figures, each application’s perfor-
mance is normalized to its performance when its threads are
evenly distributed across 2 sockets. These results show that,
due to the different memory resource sharing patterns, dif-
ferent thread-to-core mappings can cause significant perfor-
mance variability. This is similar to results on Clovertown.
On Westmere, the performance swing is as high as 10%.
Bigtable behaves similarly on both architectures as it always
benefits from cache sharing. However, interestingly, while
contentAnalyzer on Westmere benefits from cache sharing
in the 2-thread case, in the 6-thread case, it suffers from
cache sharing. In the 8-thread case, which we do not show
here, its performance degradation due to cache sharing is
over 20%. On the other hand, on Clovertown, it always
suffers from cache sharing. This discrepancy between its
sharing preference on two architectures may be due to the
fact that Westmere has a 12MB LLC instead of 4MB LLCs
on Clovertown. Whether an application can benefit from
last level cache sharing also depends on the size of the cache
and the number of threads that are executing.

In light of the space constraint, for the co-location study,
we only present the results when 6 threads of latency sensi-
tive application co-running with 6 threads of corunner (Fig-
ure 20). The y axis shows each latency sensitive applica-
tion’s performance, normalized to its performance when run-
ning alone in mapping scenario {XXX...XXX...}. This result
shows that on Westmere, depending on the co-runner, the
optimal thread-to-core mapping may also change. This is
also consistent with the observation on Clovertown.

5. THREAD-TO-CORE MAPPING
To achieve a good thread-to-core mapping to best uti-

lize shared resources, it is important to characterize appli-
cations’ interaction with these shared resources, and pin-
point the potential bottlenecks among the shared resources.
In this work, we have identified three important memory
characteristics of an application that can be exploited to
understand the preferences in memory resource sharing con-
figurations, including: its memory bandwidth consumption,
the amount of data sharing within the application, and its
footprint in the shared cache.

[Memory Bandwidth Usage] We first investigate our
applications’ memory bandwidth usage. On Clovertown, we
focus on the FSB bandwidth because FSB is a main shar-
ing point for memory bandwidth on this architecture. Our
previous experiments in Sections 3 and 4 show that when
threads are sharing the FSB, their performance may de-
grade. The amount of degradation may differ for each ap-
plication, depending on which application is co-located with
it. We hypothesize that the amount of bus bandwidth usage
for each application is a good indicator for determining its
proper FSB sharing configuration.

Figure 21 presents the bus bandwidth consumption per
thread pinned to one core for all five applications. The bus
request rate is measured using the BUS_TRANS_BURST event.
15,000 bus transactions/ms for a thread of contentAnalyzer
translates to 15, 000 × 64Byte = 0.96GB/s. The total bus
transactions/ms for all fours threads running on four cores
can be as high as 0.96GB/s × 4 = 3.8GB/s. The theoretical
FSB peak bandwidth on this platform is 10.6 GB/s. When
using a micro-benchmark that measures peak bandwidth,
STREAM [30], the observed maximum sustained bandwdith is
5.6GB/s. When four threads of contentAnalyzer are sharing
a single FSB, the bus utilization is close to 70%. Using a
similar calculation, stitcher ’s bandwidth demand is 1.6GB/s
per core. This figure shows that stitcher has the highest bus
bandwidth usage. WebSearch and bigtable have medium
bus demands and protobuf has the lowest bus bandwidth
demand. This is consistent with the mapping preferences
shown in Table 3. When webSearch and contentAnalyzer
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Figure 18: 2 threads of la-
tency sensitive applications run-
ning alone on Westmere
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Figure 19: 6 threads of la-
tency sensitive applications run-
ning alone on Westmere
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Figure 20: 6 threads of latency sensitive
applications co-running with 6 threads
of batch applications on Westmere;
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Figure 21: Bus Burst Transactions (full cache line)
per millisecond per one thread
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Figure 22: LLC misses/ms, LLC requests Share/ms
and LLC reference/ms

are running alone, because of the medium-high bus demand,
it is preferable to spread threads on two sockets and use 2
FSBs. However, when they run with stitcher, both pre-
fer not to share a FSB with stitcher because stitcher has a
much higher bus demand and can cause more performance
degradation. On the other hand, when running with proto-
buf, both webSearch and contentAnalyzer both benefit from
sharing FSB with protobuf instead of their own threads.
Bigtable benefits from sharing last level cache and FSB when
it is running alone, thus it is preferable for bigtable to share
these two resources with its own threads when running with
other applications. This experiment demonstrates that bus
bandwidth consumption is an important characteristic when
determining good thread-to-core mappings.

Our experiments in Sections 3 and 4 also demonstrate that
sharing a cache can cause significant performance impact.
There are two key characteristics to consider when studying
the interaction between an application and a shared cache:
the amount of data sharing among an application’s threads
and the application’s footprint in the shared cache.

[Data sharing] In Section 3 we show that the percentage
of cache lines that are in the ”share” states can indicate an
application’s level of data sharing. Figure 22 presents the
average LLC reference rate for a thread of each application.
In this figure, we bin LLC references into three categories:
LLC misses, LLC references that are in ”share” state, and
others (including prefetch state and cache hit that are not in
”share” state). Bigtable has the highest percentage of cache
requests that are in the share state and contentAnalyzer has
the lowest. This is consistent with our findings that bigtable
prefers to share LLC when it is running alone as well as when
it is running with other applications while contentAnalyzer
does not. On the other hand,webSearch has a relatively high
level of data sharing. However, sharing the last level cache

among its threads would cause a performance degradation.
This is because when deciding if sharing a cache would im-
prove or degrade an application’s performance and which
thread the application should share the cache with, we need
to consider not only data sharing but also the potential of
cache contention.

[Cache Footprint] When the total size of two or more
threads’ footprints is larger than the shared cache, con-
tention occurs. Previous work has studied how to identify an
application’s cache contention characteristics. Zhuravlev et.
al [46], Knauerhase et. al [25] and Mars et. al [29] show that
last level cache miss rate is a good indicator to estimate the
footprint size and predict the potential performance degra-
dation an application may cause to its co-runners. Figure 22
presents the LLC miss rate for all five applications. This
figure shows that contentAnalyzer has a higher LLC miss
rate than webSearch and less percentage of share state cache
lines. This is consistent with the fact that contentAnalyzer
suffers more from cache contention than webSearch, shown
in Figure 6. An application’s cache characteristics are im-
portant when deciding a good TTC mapping. And both
data sharing and cache footprint need to be considered.

5.1 A Heuristic Approach to TTC Mapping
Based on an application’s characteristics in terms of their

resource usage when running alone, we can predict a good
thread-to-core mapping that takes advantage of the memory
sharing topology when applications are co-located. Algo-
rithm 1 shows a heuristic algorithm to make such a decision.

The basic idea behind the heuristic is that since we can
characterize applications based on their potential bottle-
necks (bus usage, shared cache usage and the level of data
sharing), when co-locating, we should maximize the poten-
tial benefit from sharing and avoid mapping threads that

2 threads on Clovertown 6 threads on Clovertown

2 threads on Westmere 4 threads on Westmere 6 threads on Westmere
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Varying Number of  Threads and ArchitectureTable 3: Optimal Thread-To-Core Mapping in Solo and Co-location Situations

Benchmark Solo w/ Stitcher w/ Protobuf

bigtable {XXXX....}: S-LLC, S-FSB {XXXX****}: S-LLC, S-FSB {XXXX****}: S-LLC, S-FSB
contentAnalyzer {X.X.X.X.}: D-LLC, D-FSB {XXXX****}: S-LLC, S-FSB {X*X*X*X*}: D-LLC, D-FSB
webSearch {X.X.X.X.}: D-LLC, D-FSB {XXXX****}: S-LLC, S-FSB {XX**XX**}: S-LLC, D-FSB
PARSEC does not matter N/A N/A
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Figure 16: 2 threads of a latency sensitive applica-
tion colocated with 6 threads of a batch application,
normalized to the latency sensitive application’s solo
performance in {X...X...} mapping
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Figure 17: 6 threads of a latency sensitive applica-
tion colocated with 2 threads of a batch application,
normalized to the latency sensitive application’s solo
performance in {XXX.,XXX.} mapping

memory controller, and has 3 channels of 8.5GB/s/channel
bus connecting to DIMM. Processors are connected through
QuickPath interconnect (QPI). We conduct experiments to
evaluate the performance impact of sharing the LLC and
memory bandwidth on the same socket versus distributing
threads to two sockets for our three key latency sensitive
datacenter applications. Figures 18 and 19 present the re-
sults when each application is running alone with 2 threads
and 6 threads. We use a similar notation to present the
thread-to-core mapping. For example, {X.....X.....} in-
dicates two threads are mapped to two different sockets on
this architecture. In both figures, each application’s perfor-
mance is normalized to its performance when its threads are
evenly distributed across 2 sockets. These results show that,
due to the different memory resource sharing patterns, dif-
ferent thread-to-core mappings can cause significant perfor-
mance variability. This is similar to results on Clovertown.
On Westmere, the performance swing is as high as 10%.
Bigtable behaves similarly on both architectures as it always
benefits from cache sharing. However, interestingly, while
contentAnalyzer on Westmere benefits from cache sharing
in the 2-thread case, in the 6-thread case, it suffers from
cache sharing. In the 8-thread case, which we do not show
here, its performance degradation due to cache sharing is
over 20%. On the other hand, on Clovertown, it always
suffers from cache sharing. This discrepancy between its
sharing preference on two architectures may be due to the
fact that Westmere has a 12MB LLC instead of 4MB LLCs
on Clovertown. Whether an application can benefit from
last level cache sharing also depends on the size of the cache
and the number of threads that are executing.

In light of the space constraint, for the co-location study,
we only present the results when 6 threads of latency sensi-
tive application co-running with 6 threads of corunner (Fig-
ure 20). The y axis shows each latency sensitive applica-
tion’s performance, normalized to its performance when run-
ning alone in mapping scenario {XXX...XXX...}. This result
shows that on Westmere, depending on the co-runner, the
optimal thread-to-core mapping may also change. This is
also consistent with the observation on Clovertown.

5. THREAD-TO-CORE MAPPING
To achieve a good thread-to-core mapping to best uti-

lize shared resources, it is important to characterize appli-
cations’ interaction with these shared resources, and pin-
point the potential bottlenecks among the shared resources.
In this work, we have identified three important memory
characteristics of an application that can be exploited to
understand the preferences in memory resource sharing con-
figurations, including: its memory bandwidth consumption,
the amount of data sharing within the application, and its
footprint in the shared cache.

[Memory Bandwidth Usage] We first investigate our
applications’ memory bandwidth usage. On Clovertown, we
focus on the FSB bandwidth because FSB is a main shar-
ing point for memory bandwidth on this architecture. Our
previous experiments in Sections 3 and 4 show that when
threads are sharing the FSB, their performance may de-
grade. The amount of degradation may differ for each ap-
plication, depending on which application is co-located with
it. We hypothesize that the amount of bus bandwidth usage
for each application is a good indicator for determining its
proper FSB sharing configuration.

Figure 21 presents the bus bandwidth consumption per
thread pinned to one core for all five applications. The bus
request rate is measured using the BUS_TRANS_BURST event.
15,000 bus transactions/ms for a thread of contentAnalyzer
translates to 15, 000 × 64Byte = 0.96GB/s. The total bus
transactions/ms for all fours threads running on four cores
can be as high as 0.96GB/s × 4 = 3.8GB/s. The theoretical
FSB peak bandwidth on this platform is 10.6 GB/s. When
using a micro-benchmark that measures peak bandwidth,
STREAM [30], the observed maximum sustained bandwdith is
5.6GB/s. When four threads of contentAnalyzer are sharing
a single FSB, the bus utilization is close to 70%. Using a
similar calculation, stitcher ’s bandwidth demand is 1.6GB/s
per core. This figure shows that stitcher has the highest bus
bandwidth usage. WebSearch and bigtable have medium
bus demands and protobuf has the lowest bus bandwidth
demand. This is consistent with the mapping preferences
shown in Table 3. When webSearch and contentAnalyzer
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Figure 18: 2 threads of la-
tency sensitive applications run-
ning alone on Westmere
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Figure 19: 6 threads of la-
tency sensitive applications run-
ning alone on Westmere
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Figure 20: 6 threads of latency sensitive
applications co-running with 6 threads
of batch applications on Westmere;
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Figure 21: Bus Burst Transactions (full cache line)
per millisecond per one thread
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Figure 22: LLC misses/ms, LLC requests Share/ms
and LLC reference/ms

are running alone, because of the medium-high bus demand,
it is preferable to spread threads on two sockets and use 2
FSBs. However, when they run with stitcher, both pre-
fer not to share a FSB with stitcher because stitcher has a
much higher bus demand and can cause more performance
degradation. On the other hand, when running with proto-
buf, both webSearch and contentAnalyzer both benefit from
sharing FSB with protobuf instead of their own threads.
Bigtable benefits from sharing last level cache and FSB when
it is running alone, thus it is preferable for bigtable to share
these two resources with its own threads when running with
other applications. This experiment demonstrates that bus
bandwidth consumption is an important characteristic when
determining good thread-to-core mappings.

Our experiments in Sections 3 and 4 also demonstrate that
sharing a cache can cause significant performance impact.
There are two key characteristics to consider when studying
the interaction between an application and a shared cache:
the amount of data sharing among an application’s threads
and the application’s footprint in the shared cache.

[Data sharing] In Section 3 we show that the percentage
of cache lines that are in the ”share” states can indicate an
application’s level of data sharing. Figure 22 presents the
average LLC reference rate for a thread of each application.
In this figure, we bin LLC references into three categories:
LLC misses, LLC references that are in ”share” state, and
others (including prefetch state and cache hit that are not in
”share” state). Bigtable has the highest percentage of cache
requests that are in the share state and contentAnalyzer has
the lowest. This is consistent with our findings that bigtable
prefers to share LLC when it is running alone as well as when
it is running with other applications while contentAnalyzer
does not. On the other hand,webSearch has a relatively high
level of data sharing. However, sharing the last level cache

among its threads would cause a performance degradation.
This is because when deciding if sharing a cache would im-
prove or degrade an application’s performance and which
thread the application should share the cache with, we need
to consider not only data sharing but also the potential of
cache contention.

[Cache Footprint] When the total size of two or more
threads’ footprints is larger than the shared cache, con-
tention occurs. Previous work has studied how to identify an
application’s cache contention characteristics. Zhuravlev et.
al [46], Knauerhase et. al [25] and Mars et. al [29] show that
last level cache miss rate is a good indicator to estimate the
footprint size and predict the potential performance degra-
dation an application may cause to its co-runners. Figure 22
presents the LLC miss rate for all five applications. This
figure shows that contentAnalyzer has a higher LLC miss
rate than webSearch and less percentage of share state cache
lines. This is consistent with the fact that contentAnalyzer
suffers more from cache contention than webSearch, shown
in Figure 6. An application’s cache characteristics are im-
portant when deciding a good TTC mapping. And both
data sharing and cache footprint need to be considered.

5.1 A Heuristic Approach to TTC Mapping
Based on an application’s characteristics in terms of their

resource usage when running alone, we can predict a good
thread-to-core mapping that takes advantage of the memory
sharing topology when applications are co-located. Algo-
rithm 1 shows a heuristic algorithm to make such a decision.

The basic idea behind the heuristic is that since we can
characterize applications based on their potential bottle-
necks (bus usage, shared cache usage and the level of data
sharing), when co-locating, we should maximize the poten-
tial benefit from sharing and avoid mapping threads that

2 threads on Clovertown 6 threads on Clovertown

2 threads on Westmere 4 threads on Westmere 6 threads on Westmere
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Varying Number of  Threads and ArchitectureTable 3: Optimal Thread-To-Core Mapping in Solo and Co-location Situations

Benchmark Solo w/ Stitcher w/ Protobuf

bigtable {XXXX....}: S-LLC, S-FSB {XXXX****}: S-LLC, S-FSB {XXXX****}: S-LLC, S-FSB
contentAnalyzer {X.X.X.X.}: D-LLC, D-FSB {XXXX****}: S-LLC, S-FSB {X*X*X*X*}: D-LLC, D-FSB
webSearch {X.X.X.X.}: D-LLC, D-FSB {XXXX****}: S-LLC, S-FSB {XX**XX**}: S-LLC, D-FSB
PARSEC does not matter N/A N/A
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Figure 16: 2 threads of a latency sensitive applica-
tion colocated with 6 threads of a batch application,
normalized to the latency sensitive application’s solo
performance in {X...X...} mapping
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Figure 17: 6 threads of a latency sensitive applica-
tion colocated with 2 threads of a batch application,
normalized to the latency sensitive application’s solo
performance in {XXX.,XXX.} mapping

memory controller, and has 3 channels of 8.5GB/s/channel
bus connecting to DIMM. Processors are connected through
QuickPath interconnect (QPI). We conduct experiments to
evaluate the performance impact of sharing the LLC and
memory bandwidth on the same socket versus distributing
threads to two sockets for our three key latency sensitive
datacenter applications. Figures 18 and 19 present the re-
sults when each application is running alone with 2 threads
and 6 threads. We use a similar notation to present the
thread-to-core mapping. For example, {X.....X.....} in-
dicates two threads are mapped to two different sockets on
this architecture. In both figures, each application’s perfor-
mance is normalized to its performance when its threads are
evenly distributed across 2 sockets. These results show that,
due to the different memory resource sharing patterns, dif-
ferent thread-to-core mappings can cause significant perfor-
mance variability. This is similar to results on Clovertown.
On Westmere, the performance swing is as high as 10%.
Bigtable behaves similarly on both architectures as it always
benefits from cache sharing. However, interestingly, while
contentAnalyzer on Westmere benefits from cache sharing
in the 2-thread case, in the 6-thread case, it suffers from
cache sharing. In the 8-thread case, which we do not show
here, its performance degradation due to cache sharing is
over 20%. On the other hand, on Clovertown, it always
suffers from cache sharing. This discrepancy between its
sharing preference on two architectures may be due to the
fact that Westmere has a 12MB LLC instead of 4MB LLCs
on Clovertown. Whether an application can benefit from
last level cache sharing also depends on the size of the cache
and the number of threads that are executing.

In light of the space constraint, for the co-location study,
we only present the results when 6 threads of latency sensi-
tive application co-running with 6 threads of corunner (Fig-
ure 20). The y axis shows each latency sensitive applica-
tion’s performance, normalized to its performance when run-
ning alone in mapping scenario {XXX...XXX...}. This result
shows that on Westmere, depending on the co-runner, the
optimal thread-to-core mapping may also change. This is
also consistent with the observation on Clovertown.

5. THREAD-TO-CORE MAPPING
To achieve a good thread-to-core mapping to best uti-

lize shared resources, it is important to characterize appli-
cations’ interaction with these shared resources, and pin-
point the potential bottlenecks among the shared resources.
In this work, we have identified three important memory
characteristics of an application that can be exploited to
understand the preferences in memory resource sharing con-
figurations, including: its memory bandwidth consumption,
the amount of data sharing within the application, and its
footprint in the shared cache.

[Memory Bandwidth Usage] We first investigate our
applications’ memory bandwidth usage. On Clovertown, we
focus on the FSB bandwidth because FSB is a main shar-
ing point for memory bandwidth on this architecture. Our
previous experiments in Sections 3 and 4 show that when
threads are sharing the FSB, their performance may de-
grade. The amount of degradation may differ for each ap-
plication, depending on which application is co-located with
it. We hypothesize that the amount of bus bandwidth usage
for each application is a good indicator for determining its
proper FSB sharing configuration.

Figure 21 presents the bus bandwidth consumption per
thread pinned to one core for all five applications. The bus
request rate is measured using the BUS_TRANS_BURST event.
15,000 bus transactions/ms for a thread of contentAnalyzer
translates to 15, 000 × 64Byte = 0.96GB/s. The total bus
transactions/ms for all fours threads running on four cores
can be as high as 0.96GB/s × 4 = 3.8GB/s. The theoretical
FSB peak bandwidth on this platform is 10.6 GB/s. When
using a micro-benchmark that measures peak bandwidth,
STREAM [30], the observed maximum sustained bandwdith is
5.6GB/s. When four threads of contentAnalyzer are sharing
a single FSB, the bus utilization is close to 70%. Using a
similar calculation, stitcher ’s bandwidth demand is 1.6GB/s
per core. This figure shows that stitcher has the highest bus
bandwidth usage. WebSearch and bigtable have medium
bus demands and protobuf has the lowest bus bandwidth
demand. This is consistent with the mapping preferences
shown in Table 3. When webSearch and contentAnalyzer
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Figure 18: 2 threads of la-
tency sensitive applications run-
ning alone on Westmere
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Figure 19: 6 threads of la-
tency sensitive applications run-
ning alone on Westmere
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Figure 20: 6 threads of latency sensitive
applications co-running with 6 threads
of batch applications on Westmere;
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Figure 21: Bus Burst Transactions (full cache line)
per millisecond per one thread
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Figure 22: LLC misses/ms, LLC requests Share/ms
and LLC reference/ms

are running alone, because of the medium-high bus demand,
it is preferable to spread threads on two sockets and use 2
FSBs. However, when they run with stitcher, both pre-
fer not to share a FSB with stitcher because stitcher has a
much higher bus demand and can cause more performance
degradation. On the other hand, when running with proto-
buf, both webSearch and contentAnalyzer both benefit from
sharing FSB with protobuf instead of their own threads.
Bigtable benefits from sharing last level cache and FSB when
it is running alone, thus it is preferable for bigtable to share
these two resources with its own threads when running with
other applications. This experiment demonstrates that bus
bandwidth consumption is an important characteristic when
determining good thread-to-core mappings.

Our experiments in Sections 3 and 4 also demonstrate that
sharing a cache can cause significant performance impact.
There are two key characteristics to consider when studying
the interaction between an application and a shared cache:
the amount of data sharing among an application’s threads
and the application’s footprint in the shared cache.

[Data sharing] In Section 3 we show that the percentage
of cache lines that are in the ”share” states can indicate an
application’s level of data sharing. Figure 22 presents the
average LLC reference rate for a thread of each application.
In this figure, we bin LLC references into three categories:
LLC misses, LLC references that are in ”share” state, and
others (including prefetch state and cache hit that are not in
”share” state). Bigtable has the highest percentage of cache
requests that are in the share state and contentAnalyzer has
the lowest. This is consistent with our findings that bigtable
prefers to share LLC when it is running alone as well as when
it is running with other applications while contentAnalyzer
does not. On the other hand,webSearch has a relatively high
level of data sharing. However, sharing the last level cache

among its threads would cause a performance degradation.
This is because when deciding if sharing a cache would im-
prove or degrade an application’s performance and which
thread the application should share the cache with, we need
to consider not only data sharing but also the potential of
cache contention.

[Cache Footprint] When the total size of two or more
threads’ footprints is larger than the shared cache, con-
tention occurs. Previous work has studied how to identify an
application’s cache contention characteristics. Zhuravlev et.
al [46], Knauerhase et. al [25] and Mars et. al [29] show that
last level cache miss rate is a good indicator to estimate the
footprint size and predict the potential performance degra-
dation an application may cause to its co-runners. Figure 22
presents the LLC miss rate for all five applications. This
figure shows that contentAnalyzer has a higher LLC miss
rate than webSearch and less percentage of share state cache
lines. This is consistent with the fact that contentAnalyzer
suffers more from cache contention than webSearch, shown
in Figure 6. An application’s cache characteristics are im-
portant when deciding a good TTC mapping. And both
data sharing and cache footprint need to be considered.

5.1 A Heuristic Approach to TTC Mapping
Based on an application’s characteristics in terms of their

resource usage when running alone, we can predict a good
thread-to-core mapping that takes advantage of the memory
sharing topology when applications are co-located. Algo-
rithm 1 shows a heuristic algorithm to make such a decision.

The basic idea behind the heuristic is that since we can
characterize applications based on their potential bottle-
necks (bus usage, shared cache usage and the level of data
sharing), when co-locating, we should maximize the poten-
tial benefit from sharing and avoid mapping threads that

2 threads on Clovertown 6 threads on Clovertown

2 threads on Westmere 4 threads on Westmere 6 threads on Westmere
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Map threads accordingly

Adaptive Approach
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Adaptive TTC Mapping
Insight: Optimal mapping changes when co-runner changes, 
when number of threads and architecture changes

Competition Heuristics

Learning Phase

Execution Phase

Datacenter applications: 

Steady phases

Co-runner may change

Architecture may change
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Evaluation

Outperforms the average random mapping by up to 
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Figure 23: Adaptive Thread-To-Core Mapping on
Clovertown
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Figure 24: Adaptive Thread-To-Core Mapping on
Westmere

ures, we use C for contentAnalyzer, W for webSearch, B for
bigtable, S for stitcher and P for protobuf. The y axis shows
each of the three latency sensitive applications’ performance,
normalized by its performance when running alone in the
{X...X...} mapping. In both figures, the x axis shows 9
machine loads, including each of our latency sensitive appli-
cations running alone and co-located with our batch applica-
tions. Each application is configured to run on 4 cores. The
y axis shows the performance of our latency sensitive appli-
cation normalized to the worst assignment. As this figure
shows, AToM is quite effective, achieving near optimal per-
formance. In each case, AToM outperforms the average case
(average random assignment) by up to 22%, and is signifi-
cantly better performing than the worse case assignments.

6. RELATED WORK
Kozyrakis et al. [26] present a study of emerging large

scale online services workloads and show how their charac-
teristics effect the datacenter system design for architects.
Other studies that characterize the interaction between emerg-
ing datacenter workloads and underlying architectures in-
clude studies by Reddi et al. [37] and by Soundararajan
et. al. [40]. Hardavellas et al. [17, 16] investigate sharing
characteristics for database workloads and webservice work-
loads. Our work looks at large scale Google workloads and
focuses on their interactions with the underlying memory
resource sharing. Zhang et al. [45] examine the influence of
cache sharing on multithreaded applications using the PAR-
SEC suite, and conclude that there is neither significant con-
structive or destructive influence from cache sharing. Our
work expands the study to both cache and bus sharing using
commercial datacenter applications and shows that for these
applications, there is both positive and negative significant
performance impact. We also present approaches to take
advantage of the performance variability.

In the architecture community, much work has investi-
gated and proposed approaches to addressing memory re-
source sharing and contention. New architectural supports
for cache and memory bus partitioning, management and
monitoring are proposed and evaluated [10, 34, 36, 42, 27,
24, 41, 11, 19]. Most studies evaluate the performance im-
pact of resource sharing and different schemes of partitioning
using simulations. While simulations are important and nec-
essary when designing new architectures, examining large-
scale applications on existing hardware is important for im-
proving our understanding of emerging workloads as well
as improving performance in the deployed systems. Effec-
tive scheduling approaches to addressing resource sharing on
SMT processors are also proposed [39, 13, 35].

In the area of OS and runtime scheduling, most studies

focus on job co-scheduling to avoid co-locating cache con-
tentious applications together to improve performance and
fairness [25, 46, 14, 6, 31, 21, 20]. Approaches to alleviat-
ing resource contention and guaranteeing QoS by controlling
the execution rate through hardware features or a runtime
are proposed [18, 29]. Banikazemi et al. [4] present a sched-
uler to adaptively schedule threads to cores to take advan-
tage of the cache topology to alleviate resource contention.
Most of the above works use single threaded applications
and focus on the resource contention aspect. Tam et al. [44]
present a technique to cluster communicating threads onto
the same chip to reduce the communicating latency. How-
ever, their approach focuses on the constructive effect of
sharing resource without considering the potential resource
contention. There is also theoretical work to model shar-
ing caches among threads [7, 8]. In addition, compilation
techniques that are aware of the cache sharing and cache
topology also proposed [23, 22, 45, 38].

7. CONCLUSION
In this work, we present an in depth study of the inter-

action of industry-strength datacenter applications and the
shared resources in the underlying memory subsystem. We
have found a performance swing of up to 25% for web search
and 40% for other key applications, simply based on how ap-
plication threads are mapped to cores. This is particularly
significant considering that at the datacenter scale, a per-
formance improvement of even 1% can results in millions
of dollars saved. This finding demonstrates the importance
of performing intelligent thread-to-core mapping for appli-
cations in the datacenter. In this work, we have also pre-
sented key application characteristics that impact the opti-
mal thread-to-core mapping decisions, and show how these
characteristics can be used to build heuristics to perform
thread-to-core mappings. One key insight and observation
from this study is the fact that when threads of multiple
applications with diverse memory behaviors are co-located,
the ideal mapping for a given application is different than
if running alone on the system. In addition to the heuristic
approach, we present an adaptive approach, and conclude
that an adaptive approach is more attractive as it is simple
to implement and, at least for long running datacenter ap-
plications, is quite effective. Using this approach, the perfor-
mance of datacenter workloads improved by up to 22% over
status quo thread-to-core mapping and performs within 3%
of optimal mapping on average.

8. REFERENCES
[1] Latent semantic analysis.

http://en.wikipedia.org/wiki/Latent semantic analysis.
[2] Protocol buffer. http://code.google.com/p/protobuf/.
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Figure 23: Adaptive Thread-To-Core Mapping on
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Figure 24: Adaptive Thread-To-Core Mapping on
Westmere

ures, we use C for contentAnalyzer, W for webSearch, B for
bigtable, S for stitcher and P for protobuf. The y axis shows
each of the three latency sensitive applications’ performance,
normalized by its performance when running alone in the
{X...X...} mapping. In both figures, the x axis shows 9
machine loads, including each of our latency sensitive appli-
cations running alone and co-located with our batch applica-
tions. Each application is configured to run on 4 cores. The
y axis shows the performance of our latency sensitive appli-
cation normalized to the worst assignment. As this figure
shows, AToM is quite effective, achieving near optimal per-
formance. In each case, AToM outperforms the average case
(average random assignment) by up to 22%, and is signifi-
cantly better performing than the worse case assignments.

6. RELATED WORK
Kozyrakis et al. [26] present a study of emerging large

scale online services workloads and show how their charac-
teristics effect the datacenter system design for architects.
Other studies that characterize the interaction between emerg-
ing datacenter workloads and underlying architectures in-
clude studies by Reddi et al. [37] and by Soundararajan
et. al. [40]. Hardavellas et al. [17, 16] investigate sharing
characteristics for database workloads and webservice work-
loads. Our work looks at large scale Google workloads and
focuses on their interactions with the underlying memory
resource sharing. Zhang et al. [45] examine the influence of
cache sharing on multithreaded applications using the PAR-
SEC suite, and conclude that there is neither significant con-
structive or destructive influence from cache sharing. Our
work expands the study to both cache and bus sharing using
commercial datacenter applications and shows that for these
applications, there is both positive and negative significant
performance impact. We also present approaches to take
advantage of the performance variability.

In the architecture community, much work has investi-
gated and proposed approaches to addressing memory re-
source sharing and contention. New architectural supports
for cache and memory bus partitioning, management and
monitoring are proposed and evaluated [10, 34, 36, 42, 27,
24, 41, 11, 19]. Most studies evaluate the performance im-
pact of resource sharing and different schemes of partitioning
using simulations. While simulations are important and nec-
essary when designing new architectures, examining large-
scale applications on existing hardware is important for im-
proving our understanding of emerging workloads as well
as improving performance in the deployed systems. Effec-
tive scheduling approaches to addressing resource sharing on
SMT processors are also proposed [39, 13, 35].

In the area of OS and runtime scheduling, most studies

focus on job co-scheduling to avoid co-locating cache con-
tentious applications together to improve performance and
fairness [25, 46, 14, 6, 31, 21, 20]. Approaches to alleviat-
ing resource contention and guaranteeing QoS by controlling
the execution rate through hardware features or a runtime
are proposed [18, 29]. Banikazemi et al. [4] present a sched-
uler to adaptively schedule threads to cores to take advan-
tage of the cache topology to alleviate resource contention.
Most of the above works use single threaded applications
and focus on the resource contention aspect. Tam et al. [44]
present a technique to cluster communicating threads onto
the same chip to reduce the communicating latency. How-
ever, their approach focuses on the constructive effect of
sharing resource without considering the potential resource
contention. There is also theoretical work to model shar-
ing caches among threads [7, 8]. In addition, compilation
techniques that are aware of the cache sharing and cache
topology also proposed [23, 22, 45, 38].

7. CONCLUSION
In this work, we present an in depth study of the inter-

action of industry-strength datacenter applications and the
shared resources in the underlying memory subsystem. We
have found a performance swing of up to 25% for web search
and 40% for other key applications, simply based on how ap-
plication threads are mapped to cores. This is particularly
significant considering that at the datacenter scale, a per-
formance improvement of even 1% can results in millions
of dollars saved. This finding demonstrates the importance
of performing intelligent thread-to-core mapping for appli-
cations in the datacenter. In this work, we have also pre-
sented key application characteristics that impact the opti-
mal thread-to-core mapping decisions, and show how these
characteristics can be used to build heuristics to perform
thread-to-core mappings. One key insight and observation
from this study is the fact that when threads of multiple
applications with diverse memory behaviors are co-located,
the ideal mapping for a given application is different than
if running alone on the system. In addition to the heuristic
approach, we present an adaptive approach, and conclude
that an adaptive approach is more attractive as it is simple
to implement and, at least for long running datacenter ap-
plications, is quite effective. Using this approach, the perfor-
mance of datacenter workloads improved by up to 22% over
status quo thread-to-core mapping and performs within 3%
of optimal mapping on average.

8. REFERENCES
[1] Latent semantic analysis.

http://en.wikipedia.org/wiki/Latent semantic analysis.
[2] Protocol buffer. http://code.google.com/p/protobuf/.

23

Clovertown Xeon

Westmere Xeon

Lingjia Tang: lt8f@cs.virginia.edu

23Friday, June 10, 2011

mailto:lt8f@cs.virginia.edu
mailto:lt8f@cs.virginia.edu


Conclusion

Memory resource sharing has significant impact on 
datacenter applications (both constructive and 
destructive)

Performance swing up to 40% simply based on thread-
to-core mapping. 

Optimal thread-to-core mapping changes when co-
runner changes.

Importance of intelligent TTC mapping: adaptive
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