
Lingjia Tang, Jason Mars

UC San Diego

1

ReQoS:

Reactive Static/Dynamic Compilation for
QoS in Warehouse Scale Computers

Wei Wang, Tanima Dey, Mary Lou Soffa

Univ. of Virginia

Friday, March 29, 13

mailto:lingjia@cs.ucsd.edu
mailto:lingjia@cs.ucsd.edu

Warehouse Scale Computers

Host large-scale Internet services (websearch, mail, etc)

2

“Datacenters have become as
vital to the functioning of
society as power stations”

- The Economist

Expensive: hundreds of millions of dollars

Friday, March 29, 13

Warehouse Scale Computers

Host large-scale Internet services (websearch, mail, etc)

2

1 billion dollars!

“Datacenters have become as
vital to the functioning of
society as power stations”

- The Economist

Expensive: hundreds of millions of dollars

Friday, March 29, 13

Warehouse Scale Computers

Host large-scale Internet services (websearch, mail, etc)

2

1 billion dollars!

Efficiency is critical

“Datacenters have become as
vital to the functioning of
society as power stations”

- The Economist

Expensive: hundreds of millions of dollars

Friday, March 29, 13

3

Memory resource contention
significantly limits efficiency

Friday, March 29, 13

3

Memory resource contention
significantly limits efficiency

Friday, March 29, 13

3

Memory resource contention
significantly limits efficiency

Friday, March 29, 13

3

Memory resource contention
significantly limits efficiency

Core Core Core Core

L1 L1 L1 L1

L2

Mem
Controller

App 1 App 2

Friday, March 29, 13

3

Memory resource contention
significantly limits efficiency

Core Core Core Core

L1 L1 L1 L1

L2

Mem
Controller

App 1 App 2
Degrade application
performance

Limit server
utilization

Friday, March 29, 13

4

Impact of Memory Resource Contention
on Utilization

High priority
application

Low priority
application

Friday, March 29, 13

4

Impact of Memory Resource Contention
on Utilization

High priority
application

Low priority
application

so
lo

 Q
oS

Pe

rf
or

m
an

ce

so
lo

1x

High Priority
Application

Low Priority
Application

core

server

core corecore core

server

core corecore

Low utilization,
Peak performance and QoS

Option A: Disallow Colocation.

Friday, March 29, 13

4

Impact of Memory Resource Contention
on Utilization

High priority
application

Low priority
application

so
lo

 Q
oS

Pe

rf
or

m
an

ce

so
lo

1x

High Priority
Application

Low Priority
Application

core

server

core corecore core

server

core corecore

Low utilization,
Peak performance and QoS

Option A: Disallow Colocation.

 Q
oS

Pe

rf
or

m
an

ce

1x

co
-

lo
ca

tio
n

co
-

lo
ca

tio
n

Acceptable QoS
0.9x

High Priority
Application

Low Priority
Application

core

server

core corecore

High utilization,
Significant performance/QoS degradation

Option B: Allow Colocation.

Friday, March 29, 13

4

Impact of Memory Resource Contention
on Utilization

High priority
application

Low priority
application

so
lo

 Q
oS

Pe

rf
or

m
an

ce

so
lo

1x

High Priority
Application

Low Priority
Application

core

server

core corecore core

server

core corecore

Low utilization,
Peak performance and QoS

Option A: Disallow Colocation.

 Q
oS

Pe

rf
or

m
an

ce

1x

co
-

lo
ca

tio
n

co
-

lo
ca

tio
n

Acceptable QoS
0.9x

High Priority
Application

Low Priority
Application

core

server

core corecore

High utilization,
Significant performance/QoS degradation

Option B: Allow Colocation.

 Colocation often disallowed

Friday, March 29, 13

 Low Utilization is Expensive

10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

Utilization (%)

T
im

e
 (

%
)

IT
Web 2.0

Figure 1: Server Utilization Histogram. Real data
centers are under 20% utilized.

Table 1: Enterprise Data Center Utilization Traces.

Workload Avg. Utilization Description

Web 2.0 7.4% “Web 2.0” application servers
IT 14.2% Enterprise IT Infrastructure apps

bile and handheld devices, one critical subsystem of cur-
rent blade chassis falls short of meeting PowerNap’s energy-
efficiency requirements: the power conversion system. Power-
Nap reduces total ensemble power consumption when all
blades are napping to only 6% of the peak when all are ac-
tive. Power supplies are notoriously inefficient at low loads,
typically providing conversion efficiency below 70% under
20% load [5]. These losses undermines PowerNap’s energy
efficiency.

Directly improving power supply efficiency implies a sub-
stantial cost premium. Instead, we introduce the Redundant
Array for Inexpensive Load Sharing (RAILS), a power pro-
visioning approach where power draw is shared over an ar-
ray of low-capacity power supply units (PSUs) built with
commodity components. The key innovation of RAILS is
to size individual power modules such that the power de-
livery solution operates at high efficiency across the entire
range of PowerNap’s power demands. In addition, RAILS
provides N+1 redundancy, graceful compute capacity degra-
dation in the face of multiple power module failures, and
reduced component costs relative to conventional enterprise-
class power systems. Through modeling and analysis of ac-
tual data center workload traces, we demonstrate:

• Analysis of idle/busy intervals in actual data centers.

We analyze utilization traces from production servers
and data centers to determine the distribution of idle and
active periods. Though interactive servers are typically
over 60% idle, most idle intervals are under one second.

• Energy-efficiency and response time bounds. Through
queuing analysis, we establish bounds on PowerNap’s
energy efficiency and response time impact. Using our

Figure 2: Server Power Breakdown. No single com-
ponent dominates total system power.

models, we determine that PowerNap is effective if state
transition time is below 10ms, and incurs no overheads
below 1ms. Furthermore, we show that PowerNap pro-
vides greater energy efficiency and lower response time
than solutions based on DVFS.

• Efficient PowerNap power provisioning with RAILS.
Our analysis of commercial data center workload traces
demonstrates that RAILS improves average power con-
version efficiency from 68% to 86% in PowerNap-
enabled servers.

2. Understanding Server Utilization

It has been well-established in the research literature that the
average server utilization of data centers is low, often below
30% [2, 3, 6]. In facilities that provide interactive services
(e.g., transaction processing, file servers, Web 2.0), average
utilization is often even worse, sometimes as low as 10% [3].
Figure 1 depicts a histogram of utilization for two production
workloads from enterprise-scale commercial deployments.
Table 1 describes the workloads running on these servers.
We derive this data from utilization traces collected over
many days, aggregated over more than 120 severs (produc-
tion utilization traces were provided courtesy of HP Labs).
The most striking feature of this data is that the servers spend
the vast majority of time under 10% utilization.

Data center utilization is unlikely to increase for two reasons.
First, data center operators must provision for peak rather
than average load. For interactive services, peak utilization
often exceeds average utilization by more than a factor of
three [3]. Second, to provide redundancy in the event of
failures, operators usually deploy more systems than are
actually needed. Though server consolidation can improve
average utilization, performance isolation, redundancy, and
service robustness concerns often preclude consolidation of
mission-critical services.

Low utilization creates an energy efficiency challenge be-
cause conventional servers are notoriously inefficient at low
loads. Although power-saving features like clock gating and

Figure: server utilization histogram [1]

5

[1] Meisner et al, “Powernap: eliminating server idle power”, ASPLOS ‘09

1% improvement is millions of dollars

Friday, March 29, 13

6

Goal: Improve Utilization

so
lo

 Q
oS

Pe

rf
or

m
an

ce

so
lo

1x

Option A: Disallow colocation

High Priority
Application

Low Priority
Application

core

server

core corecore core

server

core corecore
 Q

oS

Pe
rf

or
m

an
ce

1x

co
-

lo
ca

tio
n

co
-

lo
ca

tio
n

 Option B: Allow Colocation

Acceptable QoS
0.9x

High Priority
Application

Low Priority
Application

core

server

core corecore

Friday, March 29, 13

6

Goal: Improve Utilization
so

lo

 Q
oS

Pe

rf
or

m
an

ce

so
lo

1x

Option A: Disallow colocation

High Priority
Application

Low Priority
Application

core

server

core corecore core

server

core corecore

 Q
oS

Pe

rf
or

m
an

ce

1x

co
-

lo
ca

tio
n

co
-

lo
ca

tio
n

 Option B: Allow Colocation

Acceptable QoS
0.9x

High Priority
Application

Low Priority
Application

core

server

core corecore

Friday, March 29, 13

6

Goal: Improve Utilization
so

lo

 Q
oS

Pe

rf
or

m
an

ce

so
lo

1x

Option A: Disallow colocation

High Priority
Application

Low Priority
Application

core

server

core corecore core

server

core corecore

 Q
oS

Pe

rf
or

m
an

ce

1x

co
-

lo
ca

tio
n

co
-

lo
ca

tio
n

 Option B: Allow Colocation

Acceptable QoS
0.9x

High Priority
Application

Low Priority
Application

core

server

core corecore

 Q
oS

Pe

rf
or

m
an

ce

1x

co
-

lo
ca

tio
n

co
-

lo
ca

tio
n

High Priority
Application

Low Priority
Application

Acceptable QoS
0.9x

Facilitate “safe” co-location
to improve utilization

core

server

core corecore

Friday, March 29, 13

6

Goal: Improve Utilization
so

lo

 Q
oS

Pe

rf
or

m
an

ce

so
lo

1x

Option A: Disallow colocation

High Priority
Application

Low Priority
Application

core

server

core corecore core

server

core corecore

 Q
oS

Pe

rf
or

m
an

ce

1x

co
-

lo
ca

tio
n

co
-

lo
ca

tio
n

 Option B: Allow Colocation

Acceptable QoS
0.9x

High Priority
Application

Low Priority
Application

core

server

core corecore

 Q
oS

Pe

rf
or

m
an

ce

1x

co
-

lo
ca

tio
n

co
-

lo
ca

tio
n

High Priority
Application

Low Priority
Application

Acceptable QoS
0.9x

Facilitate “safe” co-location
to improve utilization

core

server

core corecore

Gained
Utilization

Friday, March 29, 13

6

Goal: Improve Utilization
so

lo

 Q
oS

Pe

rf
or

m
an

ce

so
lo

1x

Option A: Disallow colocation

High Priority
Application

Low Priority
Application

core

server

core corecore core

server

core corecore

 Q
oS

Pe

rf
or

m
an

ce

1x

co
-

lo
ca

tio
n

co
-

lo
ca

tio
n

 Option B: Allow Colocation

Acceptable QoS
0.9x

High Priority
Application

Low Priority
Application

core

server

core corecore

 Q
oS

Pe

rf
or

m
an

ce

1x

co
-

lo
ca

tio
n

co
-

lo
ca

tio
n

High Priority
Application

Low Priority
Application

Acceptable QoS
0.9x

Facilitate “safe” co-location
to improve utilization

core

server

core corecore

Gained
Utilization

QoS

ut
ili

za
tio

n

Friday, March 29, 13

6

Goal: Improve Utilization
so

lo

 Q
oS

Pe

rf
or

m
an

ce

so
lo

1x

Option A: Disallow colocation

High Priority
Application

Low Priority
Application

core

server

core corecore core

server

core corecore

 Q
oS

Pe

rf
or

m
an

ce

1x

co
-

lo
ca

tio
n

co
-

lo
ca

tio
n

 Option B: Allow Colocation

Acceptable QoS
0.9x

High Priority
Application

Low Priority
Application

core

server

core corecore

 Q
oS

Pe

rf
or

m
an

ce

1x

co
-

lo
ca

tio
n

co
-

lo
ca

tio
n

High Priority
Application

Low Priority
Application

Acceptable QoS
0.9x

Facilitate “safe” co-location
to improve utilization

core

server

core corecore

Gained
Utilization

QoS

ut
ili

za
tio

n

option A

Friday, March 29, 13

6

Goal: Improve Utilization
so

lo

 Q
oS

Pe

rf
or

m
an

ce

so
lo

1x

Option A: Disallow colocation

High Priority
Application

Low Priority
Application

core

server

core corecore core

server

core corecore

 Q
oS

Pe

rf
or

m
an

ce

1x

co
-

lo
ca

tio
n

co
-

lo
ca

tio
n

 Option B: Allow Colocation

Acceptable QoS
0.9x

High Priority
Application

Low Priority
Application

core

server

core corecore

 Q
oS

Pe

rf
or

m
an

ce

1x

co
-

lo
ca

tio
n

co
-

lo
ca

tio
n

High Priority
Application

Low Priority
Application

Acceptable QoS
0.9x

Facilitate “safe” co-location
to improve utilization

core

server

core corecore

Gained
Utilization

QoS

ut
ili

za
tio

n

option A

option B

Friday, March 29, 13

6

Goal: Improve Utilization
so

lo

 Q
oS

Pe

rf
or

m
an

ce

so
lo

1x

Option A: Disallow colocation

High Priority
Application

Low Priority
Application

core

server

core corecore core

server

core corecore

 Q
oS

Pe

rf
or

m
an

ce

1x

co
-

lo
ca

tio
n

co
-

lo
ca

tio
n

 Option B: Allow Colocation

Acceptable QoS
0.9x

High Priority
Application

Low Priority
Application

core

server

core corecore

 Q
oS

Pe

rf
or

m
an

ce

1x

co
-

lo
ca

tio
n

co
-

lo
ca

tio
n

High Priority
Application

Low Priority
Application

Acceptable QoS
0.9x

Facilitate “safe” co-location
to improve utilization

core

server

core corecore

Gained
Utilization

QoS

ut
ili

za
tio

n

option A

option B

ReQoS

Friday, March 29, 13

6

Goal: Improve Utilization
so

lo

 Q
oS

Pe

rf
or

m
an

ce

so
lo

1x

Option A: Disallow colocation

High Priority
Application

Low Priority
Application

core

server

core corecore core

server

core corecore

 Q
oS

Pe

rf
or

m
an

ce

1x

co
-

lo
ca

tio
n

co
-

lo
ca

tio
n

 Option B: Allow Colocation

Acceptable QoS
0.9x

High Priority
Application

Low Priority
Application

core

server

core corecore

 Q
oS

Pe

rf
or

m
an

ce

1x

co
-

lo
ca

tio
n

co
-

lo
ca

tio
n

High Priority
Application

Low Priority
Application

Acceptable QoS
0.9x

Facilitate “safe” co-location
to improve utilization

core

server

core corecore

Gained
Utilization

QoS

ut
ili

za
tio

n

option A

option B

ReQoS

Friday, March 29, 13

Prior Work

7

Contention Aware
Scheduling

Our Goal

Decides who should be
colocated to ensure QoS

Change application
characteristics to enforce
QoS

Complementary

Friday, March 29, 13

Basic Idea of ReQoS

8
Friday, March 29, 13

Basic Idea of ReQoS

Challenges:
detection contention and QoS interference
analyze and react for QoS management
low-overhead

8
Friday, March 29, 13

Basic Idea of ReQoS

Challenges:
detection contention and QoS interference
analyze and react for QoS management
low-overhead

Basic Idea:
Identify contentious regions
Dynamically control the execution rate of those regions

8
Friday, March 29, 13

Basic Idea of ReQoS

Challenges:
detection contention and QoS interference
analyze and react for QoS management
low-overhead

Basic Idea:
Identify contentious regions
Dynamically control the execution rate of those regions

ReQoS:
Static compiler
Lightweight runtime

8
Friday, March 29, 13

9

RQ-Compiler:

Profiler to identify
contentious code regions

Compiler to add
runtime hooks to
identified regions

Low Priority
Application

invoke_runtime
()

RQ-Compiler

Profiler/
Analyzer

Compiler

Low Priority
Application

Contentious
Region

Friday, March 29, 13

9

RQ-Compiler:

Profiler to identify
contentious code regions

Compiler to add
runtime hooks to
identified regions

Low Priority
Application

invoke_runtime
()

RQ-Compiler

Profiler/
Analyzer

Compiler

High Priority
Application

 MonitorNap Engine

RQ-Runtime

C
on

tr
ol

Ex

ec
ut

io
n

N
ot

ify

Monitored
QOS

Low Priority
Application

Contentious
Region

Friday, March 29, 13

9

RQ-Compiler:

Profiler to identify
contentious code regions

Compiler to add
runtime hooks to
identified regions

Low Priority
Application

invoke_runtime
()

RQ-Compiler

Profiler/
Analyzer

Compiler

RQ-Runtime

Co-designed with compiler

Dynamic contention detection
and execution throttling

Feedback-controlled

Lightweight

High Priority
Application

 MonitorNap Engine

RQ-Runtime

C
on

tr
ol

Ex

ec
ut

io
n

N
ot

ify

Monitored
QOS

Low Priority
Application

Contentious
Region

Friday, March 29, 13

Key insights of ReQoS

Take advantages of both compiler and runtime for low overhead
QoS management

Static compiler

Provide insights about code region characteristics

Hooks to invoke runtime -> Reduce runtime overhead

Lightweight Runtime

Adjust execution rate based on the amount of contention and QoS
degradation

Precise QoS control

Maximize utilization 10
Friday, March 29, 13

RQ-Compile

11

 L1: ld
ld

 mov
 jmp L1

 L1: ld
ld

 mov
 invoke_rt()

 jmp L1

contention
score

time

model:

3.2 Identify PMUs for Memory Resource Usage

In this section, we identify performance counters (PMUs) to esti-
mate the usage of memory resources including LLC and memory
bandwidth. Modern architecture provides numerous performance
counters for various aspects of the microarechitecture. We need to
identify performance counters to estimate the how aggressive an
application’s usage of shared cache and memory bandwidth. On
our Intel Core i7 platform, we identify the number of cache lines
the last level cache brings in per millisecond (LLC Lines In/ms),
as shown in Figure 3, to measure the memory bandwidth usage.
This is because that LLC lines in rate can better capture the actual
aggregate pressure an application is putting on the bandwidth than
LLC miss rate or ratio because it includes prefetchers’ effect on the
bandwidth. We identify (L2LinesIn - L3LinesIn)/ms to estimate the
shared cache (L3) usage. (L2LinesIn - L3LinesIn) rate shows how
much data is used in an interval that is coming from only L3 and
not the DRAM. However, unlike using L3LinesIn/ms to estimate
the bandwidth usage, (L2LinesIn - L3LinesIn) rate is an approx-
imation of the L3 cache usage. As we discussed, both the cache
footprint and the access frequency are dimensions of the cache us-
age. Bigger footprint and higher access frequency indicate more
pressure on the cache. (L2LinesIn - L3LinesIn) rate only reflects
the frequency but may not fully reflect the application’s footprint in
the L3 cache because PMUs do not reflect the amount of data reuse.
However, we will show that this is a sufficient approximation when
indicating contentiousness. Prefetcher usage is manifested in both
cache and bandwidth usage. The main impact of prefetchers is the
increased bandwidth and the cache space the prefetched data oc-
cupy. Because both L3LinesIn and L2LinesIn include the prefetch-
ers’ traffic, we do not need an extra PMU to measure the prefetcher
usage. Although we use an Intel Core i7 platform here, the rea-
soning of selecting PMUs should be general for other multicore
architectures. Using the above PMUs, Equation 1 becomes:

C = a1×(L2LinesIn rate−L3LinesIn rate)+b1×L3LinesIn rate
(2)

contention score = f(PMUs) (3)

Solo LLC miss rate and ratio do not accurately indicate an appli-
cation’s level of contentiousness. There are two main reasons that
our model (Equation 3) can be more accurate. Firstly, LLC miss
rate does not fully reflect the contention for the memory bandwidth
or prefetcher. LLC miss rate or ratio, as an architectural perfor-
mance monitoring event on most platforms, does not capture the
prefetching bandwidth, which often consumes a large portion of the
memory bandwidth on modern architectures. Secondly, LLC miss
rate and ratio also cannot accurately capture cache contentiousness
of an application. An application can have a working set that fits
in the L3 cache. The application can frequently access its working
set without incurring many cache misses. However, since it is heav-
ily using the shared cache, it can be very cache contentious when
co-located and causing cache misses to its co-runners. LLC miss
rate cannot accurately predict cache-intensive applications’ con-
tentiousness but (L2LinesIn - L3LinesIn) rate can.

3.3 Regression to Determine Coefficients

In this section, we use multiple regression to determine the coef-
ficients in Equation 3. We profile a set of synthetic benchmarks to
collect the selected performance counters as well as the contention
characteristics of these benchmarks on a real architecture. Using
performance counter profiles to estimate resource usages in Equa-
tion 1, we can use regression analysis to determine coefficients of
the models. The goal of the regression analysis is to firstly test that
whether there is a strong correlation between an application’s re-
source usage and its contention characteristics; and secondly to de-
termine the relative importance of contention in various resources.

Shared Cache

L2 L2 L2 L2

Core Core Core Core

Remaining Memory Subsystem

Application

LLC Lines In
(contentiousness)

L2 Lines In
(sensitivity)

Figure 3. PMUs used for predicting contention characteristics

Table 1. Synthetic Benchmarks

Benchmark Footprint Description

bst 4mb, 8mb, 50mb random accessing a binary search tree
naive 4mb, 8mb, 50mb random accessing an array
er-naive 4mb, 8mb, 50mb fast random accessing an array
blockie small, medium,

large
a number of large 3D arrays. A portion
of one array is continuously copied to
another.

sledge small, medium,
large

two large arrays, copies data back and
forth between arrays with this sledge-
hammer pattern.

Synthetic Benchmarks To conduct regression analysis, we col-
lect PMU profiles and contention characteristics of a synthetic
benchmark suite Smashbench. Table 1 presents our synthetic
benchmarks. Bst, naive, blockie and sledge are from the con-
tention benchmark suite developed by Mars et al. [14]. The bench-
marks are memory intensive applications with various memory ac-
cess patterns. The only difference between naive and er-naive is
that er-naive uses a much faster random number generator. The
goal is to test how contention characteristics would change when
an application’s cache access frequency increases but everything
else remains the same. [OMG! BAD]They are run using 3 different
inputs with different working set sizes to stress different memory
resources.

Regression We conduct multiple linear regression on Equa-
tion 3 using each benchmark’s L2LinesIn rate, L3LinesIn rate and
average C (contentiousness) [TODO: DEFINE CONTENTIOUSNES
SOMEWHERE] The regression result for contentiousness is:

C = 1.663 × (L2LinesIn/ns − L3LinesIn/ns)

+ 8.890 × L3LinesIn/ns + 0.044 (4)

The p value for (L2LinesIn/ns - L3LinesIn/ns) is 0.018;
for L3LinesIn/ns, 5.11e-07; for the entire regression, 2.015e-
06; all smaller than 0.5, indicating statistically significant effects.
The R-squared is 0.8876, indicating a strong fit. The coefficients
show the relative importance between the bandwidth usage and the
LLC usage, indicating that memory bandwidth contention has a
more dominating effect. Figure 4 presents benchmarks’ predicted
contentiousness values using the regression model (Equation 4)
comparing against the measured actual average contentiousness.

What essentially this model shows is that two major PMUs are
very indicative for potential performance interference a code region
may cause: 1) LLC Lines In, which how much the application is
using memory bandwidth and 2) L2 Lines in, which is how much
it is using L3 and the memory bandwidth. This model successfully
covers both code regions thht are cache contentious (code regions
that are aggressively using LLC but do not incur cache misses and
pressure on the bandwidth) and memory bandwidth contentious
(code regions that are aggressively using memory bandwidth, but

4 2011/9/18

Low Priority
Application

Profiler

Profiler: identify contentious regions

RQ-compiler: instruments markers for runtime

compiler

Friday, March 29, 13

RQ-Compile

11

 L1: ld
ld

 mov
 jmp L1

 L1: ld
ld

 mov
 invoke_rt()

 jmp L1

contention
score

time

model:

3.2 Identify PMUs for Memory Resource Usage

In this section, we identify performance counters (PMUs) to esti-
mate the usage of memory resources including LLC and memory
bandwidth. Modern architecture provides numerous performance
counters for various aspects of the microarechitecture. We need to
identify performance counters to estimate the how aggressive an
application’s usage of shared cache and memory bandwidth. On
our Intel Core i7 platform, we identify the number of cache lines
the last level cache brings in per millisecond (LLC Lines In/ms),
as shown in Figure 3, to measure the memory bandwidth usage.
This is because that LLC lines in rate can better capture the actual
aggregate pressure an application is putting on the bandwidth than
LLC miss rate or ratio because it includes prefetchers’ effect on the
bandwidth. We identify (L2LinesIn - L3LinesIn)/ms to estimate the
shared cache (L3) usage. (L2LinesIn - L3LinesIn) rate shows how
much data is used in an interval that is coming from only L3 and
not the DRAM. However, unlike using L3LinesIn/ms to estimate
the bandwidth usage, (L2LinesIn - L3LinesIn) rate is an approx-
imation of the L3 cache usage. As we discussed, both the cache
footprint and the access frequency are dimensions of the cache us-
age. Bigger footprint and higher access frequency indicate more
pressure on the cache. (L2LinesIn - L3LinesIn) rate only reflects
the frequency but may not fully reflect the application’s footprint in
the L3 cache because PMUs do not reflect the amount of data reuse.
However, we will show that this is a sufficient approximation when
indicating contentiousness. Prefetcher usage is manifested in both
cache and bandwidth usage. The main impact of prefetchers is the
increased bandwidth and the cache space the prefetched data oc-
cupy. Because both L3LinesIn and L2LinesIn include the prefetch-
ers’ traffic, we do not need an extra PMU to measure the prefetcher
usage. Although we use an Intel Core i7 platform here, the rea-
soning of selecting PMUs should be general for other multicore
architectures. Using the above PMUs, Equation 1 becomes:

C = a1×(L2LinesIn rate−L3LinesIn rate)+b1×L3LinesIn rate
(2)

contention score = f(PMUs) (3)

Solo LLC miss rate and ratio do not accurately indicate an appli-
cation’s level of contentiousness. There are two main reasons that
our model (Equation 3) can be more accurate. Firstly, LLC miss
rate does not fully reflect the contention for the memory bandwidth
or prefetcher. LLC miss rate or ratio, as an architectural perfor-
mance monitoring event on most platforms, does not capture the
prefetching bandwidth, which often consumes a large portion of the
memory bandwidth on modern architectures. Secondly, LLC miss
rate and ratio also cannot accurately capture cache contentiousness
of an application. An application can have a working set that fits
in the L3 cache. The application can frequently access its working
set without incurring many cache misses. However, since it is heav-
ily using the shared cache, it can be very cache contentious when
co-located and causing cache misses to its co-runners. LLC miss
rate cannot accurately predict cache-intensive applications’ con-
tentiousness but (L2LinesIn - L3LinesIn) rate can.

3.3 Regression to Determine Coefficients

In this section, we use multiple regression to determine the coef-
ficients in Equation 3. We profile a set of synthetic benchmarks to
collect the selected performance counters as well as the contention
characteristics of these benchmarks on a real architecture. Using
performance counter profiles to estimate resource usages in Equa-
tion 1, we can use regression analysis to determine coefficients of
the models. The goal of the regression analysis is to firstly test that
whether there is a strong correlation between an application’s re-
source usage and its contention characteristics; and secondly to de-
termine the relative importance of contention in various resources.

Shared Cache

L2 L2 L2 L2

Core Core Core Core

Remaining Memory Subsystem

Application

LLC Lines In
(contentiousness)

L2 Lines In
(sensitivity)

Figure 3. PMUs used for predicting contention characteristics

Table 1. Synthetic Benchmarks

Benchmark Footprint Description

bst 4mb, 8mb, 50mb random accessing a binary search tree
naive 4mb, 8mb, 50mb random accessing an array
er-naive 4mb, 8mb, 50mb fast random accessing an array
blockie small, medium,

large
a number of large 3D arrays. A portion
of one array is continuously copied to
another.

sledge small, medium,
large

two large arrays, copies data back and
forth between arrays with this sledge-
hammer pattern.

Synthetic Benchmarks To conduct regression analysis, we col-
lect PMU profiles and contention characteristics of a synthetic
benchmark suite Smashbench. Table 1 presents our synthetic
benchmarks. Bst, naive, blockie and sledge are from the con-
tention benchmark suite developed by Mars et al. [14]. The bench-
marks are memory intensive applications with various memory ac-
cess patterns. The only difference between naive and er-naive is
that er-naive uses a much faster random number generator. The
goal is to test how contention characteristics would change when
an application’s cache access frequency increases but everything
else remains the same. [OMG! BAD]They are run using 3 different
inputs with different working set sizes to stress different memory
resources.

Regression We conduct multiple linear regression on Equa-
tion 3 using each benchmark’s L2LinesIn rate, L3LinesIn rate and
average C (contentiousness) [TODO: DEFINE CONTENTIOUSNES
SOMEWHERE] The regression result for contentiousness is:

C = 1.663 × (L2LinesIn/ns − L3LinesIn/ns)

+ 8.890 × L3LinesIn/ns + 0.044 (4)

The p value for (L2LinesIn/ns - L3LinesIn/ns) is 0.018;
for L3LinesIn/ns, 5.11e-07; for the entire regression, 2.015e-
06; all smaller than 0.5, indicating statistically significant effects.
The R-squared is 0.8876, indicating a strong fit. The coefficients
show the relative importance between the bandwidth usage and the
LLC usage, indicating that memory bandwidth contention has a
more dominating effect. Figure 4 presents benchmarks’ predicted
contentiousness values using the regression model (Equation 4)
comparing against the measured actual average contentiousness.

What essentially this model shows is that two major PMUs are
very indicative for potential performance interference a code region
may cause: 1) LLC Lines In, which how much the application is
using memory bandwidth and 2) L2 Lines in, which is how much
it is using L3 and the memory bandwidth. This model successfully
covers both code regions thht are cache contentious (code regions
that are aggressively using LLC but do not incur cache misses and
pressure on the bandwidth) and memory bandwidth contentious
(code regions that are aggressively using memory bandwidth, but

4 2011/9/18

Low Priority
Application

Profiler

Profiler: identify contentious regions

RQ-compiler: instruments markers for runtime

compiler

L3 miss rate L3 hit rate Our model

0.47 0.28 0.91

correlation coefficient RModel accuracy

Friday, March 29, 13

RQ-Runtime

Monitor

Nap Engine

Detect Contention

Control Napping
12

PMU

Monitor

detect
contention

AnalyzerNap()

yes

no

Nap Engine

High Priority
Application

Low Priority
Application

Runtime Engine

IPC

Friday, March 29, 13

RQ-Runtime: Detection/Reaction Policy
[Heuristic Simple]

Conservative: assume that all QoS degradation is caused by
contention. Throttle down when degradation is detected

13
Friday, March 29, 13

RQ-Runtime: Detection/Reaction Policy
[Heuristic Simple]

Conservative: assume that all QoS degradation is caused by
contention. Throttle down when degradation is detected

13

Check

Execute

Intermittent
Nap

∆IPC is small
volun

tar
y c

hec
k

∆IPC
 is

sm
all

∆IPC is significant
∆IPC is significant

[Heuristic Targeted] Feedback controlled
Measure the effect of throttling on QoS

Friday, March 29, 13

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 100 200 300 400 500 600 700 800 900 1000

N
o

rm
a

liz
e

d
 I

P
C

time

w/ original sledge
w/ sledge on RN-Runtime, simple heuristic

Figure 6.17: Sphinx normalized IPC with original sledge and with sledge with RN H1

balance configuration and sphinx is using ref input. To calculate the normalized IPC, we

collect the IPC profiles of sphinx when it is running alone (solo) and running with sledge.

IPC is sampled every 1 ms and all profiles of the entire execution of sphinx are down

sampled to 1000 data points. The normalized IPC at point i is calculated as IPCcorun i

IPCsolo i
.

Therefore, the closer the normalized IPC to 1, the less the degradation. In Figure 6.17, the

line denoting the original sledge shows phase-level changes of the IPC degradation due to

contention. For example, around samples 100 to 200, and 300 to 400, there are noticeable

phases of degradation increase. Also the degradation is less significant during the later

half of the execution. Figure 6.17 also clearly demonstrates the IPC improvement achieved

by RN-Runtime along the entire execution of sphinx. Instead of around 60%-70% of the

normalized IPC when running with the original sledge , Reactive-Niceness improves the

normalized IPC to above 80% through most of the execution.

Similar to Figure 6.17, Figure 6.18 presents sphinx’s normalized IPC when it is running

with sledge using targeted heuristics (conservative 90 configuration), also compar-

ing to its normalized IPC when running with the original sledge. Despite the distinctive

phases of varying levels of degradation when running with the original sledge as discussed

previously (for example, samples 100-200 and 300-400), targeted heuristic consistently

guarantees around 90% IPC for sphinx through the entire execution. This is different from

the simple heuristic shown Figure 6.17 where the improved normalized IPC fluctuates be-

101

14

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 100 200 300 400 500 600 700 800 900 1000

N
o

rm
a

liz
e

d
 I

P
C

time

w/ original sledge
w/ w/ sledge on RN-Runtime, targeted heuristic

Figure 6.18: Sphinx normalized IPC with original sledge and with sledge with RN H2

tween 70% and 90%. This comparison highlights the difference between the simple and

targeted heuristics. While simple is effective in improving the QoS, targeted heuristic

is effective in adapting, achieving and maintaining a stable QoS level as specified.

Similar to Figures 6.17 and 6.18, Figures 6.19 and 6.20 present the normalized IPC of

sphinx when it is running with the original milc, as well as milc with Reactive-Niceness. In

Figures 6.19 and 6.20, the RN-Runtime for milc uses the simple heuristic and targeted

heuristic respectively. The IPC of sphinx when running with the original milc demon-

strates the varying levels of contention and degradation. For example, during samples 600

to 800, the degradation is significantly smaller (normalized IPC close to 1) than the rest of

the execution. A few samples with normalized IPC higher than 1 are due to aliasing of down-

sampling. In this set of experiments, targeted heuristic is configured as conservative 90,

meaning RN-Runtime aims at less than 10% of the QoS degradation for sphinx. Simple

heuristic is configured with QoS biased configuration to achieve the similar QoS goal as

targeted. Figures 6.17 and 6.18 demonstrate the effectiveness of Reactive-Niceness. The

QoS of sphinx is significantly improved after applying RN to corunning milc; the normal-

ized IPC of sphinx is stable and between 0.9 and 1.

Figure 6.21 presents the corresponding average nap duration of milc for every 2 ms’ ex-

ecution, decided dynamically by RN-Runtime based on dynamic contention detection. The

longer the nap duration, the lower the utilization. Figure 6.21 shows that simple heuristic

102

Evaluation: RQ (Simple) vs. RQ (Targeted)
N

or
m

al
iz

ed

IP
C

N
or

m
al

iz
ed

IP

C

sphinx: high priority
sledge: low priority

Friday, March 29, 13

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 100 200 300 400 500 600 700 800 900 1000

N
o

rm
a

liz
e

d
 I

P
C

time

w/ original sledge
w/ sledge on RN-Runtime, simple heuristic

Figure 6.17: Sphinx normalized IPC with original sledge and with sledge with RN H1

balance configuration and sphinx is using ref input. To calculate the normalized IPC, we

collect the IPC profiles of sphinx when it is running alone (solo) and running with sledge.

IPC is sampled every 1 ms and all profiles of the entire execution of sphinx are down

sampled to 1000 data points. The normalized IPC at point i is calculated as IPCcorun i

IPCsolo i
.

Therefore, the closer the normalized IPC to 1, the less the degradation. In Figure 6.17, the

line denoting the original sledge shows phase-level changes of the IPC degradation due to

contention. For example, around samples 100 to 200, and 300 to 400, there are noticeable

phases of degradation increase. Also the degradation is less significant during the later

half of the execution. Figure 6.17 also clearly demonstrates the IPC improvement achieved

by RN-Runtime along the entire execution of sphinx. Instead of around 60%-70% of the

normalized IPC when running with the original sledge , Reactive-Niceness improves the

normalized IPC to above 80% through most of the execution.

Similar to Figure 6.17, Figure 6.18 presents sphinx’s normalized IPC when it is running

with sledge using targeted heuristics (conservative 90 configuration), also compar-

ing to its normalized IPC when running with the original sledge. Despite the distinctive

phases of varying levels of degradation when running with the original sledge as discussed

previously (for example, samples 100-200 and 300-400), targeted heuristic consistently

guarantees around 90% IPC for sphinx through the entire execution. This is different from

the simple heuristic shown Figure 6.17 where the improved normalized IPC fluctuates be-

101

14

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 100 200 300 400 500 600 700 800 900 1000

N
o

rm
a

liz
e

d
 I

P
C

time

w/ original sledge
w/ w/ sledge on RN-Runtime, targeted heuristic

Figure 6.18: Sphinx normalized IPC with original sledge and with sledge with RN H2

tween 70% and 90%. This comparison highlights the difference between the simple and

targeted heuristics. While simple is effective in improving the QoS, targeted heuristic

is effective in adapting, achieving and maintaining a stable QoS level as specified.

Similar to Figures 6.17 and 6.18, Figures 6.19 and 6.20 present the normalized IPC of

sphinx when it is running with the original milc, as well as milc with Reactive-Niceness. In

Figures 6.19 and 6.20, the RN-Runtime for milc uses the simple heuristic and targeted

heuristic respectively. The IPC of sphinx when running with the original milc demon-

strates the varying levels of contention and degradation. For example, during samples 600

to 800, the degradation is significantly smaller (normalized IPC close to 1) than the rest of

the execution. A few samples with normalized IPC higher than 1 are due to aliasing of down-

sampling. In this set of experiments, targeted heuristic is configured as conservative 90,

meaning RN-Runtime aims at less than 10% of the QoS degradation for sphinx. Simple

heuristic is configured with QoS biased configuration to achieve the similar QoS goal as

targeted. Figures 6.17 and 6.18 demonstrate the effectiveness of Reactive-Niceness. The

QoS of sphinx is significantly improved after applying RN to corunning milc; the normal-

ized IPC of sphinx is stable and between 0.9 and 1.

Figure 6.21 presents the corresponding average nap duration of milc for every 2 ms’ ex-

ecution, decided dynamically by RN-Runtime based on dynamic contention detection. The

longer the nap duration, the lower the utilization. Figure 6.21 shows that simple heuristic

102

Evaluation: RQ (Simple) vs. RQ (Targeted)
N

or
m

al
iz

ed

IP
C

N
or

m
al

iz
ed

IP

C

QoS when colocated with
the original low priority

sphinx: high priority
sledge: low priority

Friday, March 29, 13

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 100 200 300 400 500 600 700 800 900 1000

N
o

rm
a

liz
e

d
 I

P
C

time

w/ original sledge
w/ sledge on RN-Runtime, simple heuristic

Figure 6.17: Sphinx normalized IPC with original sledge and with sledge with RN H1

balance configuration and sphinx is using ref input. To calculate the normalized IPC, we

collect the IPC profiles of sphinx when it is running alone (solo) and running with sledge.

IPC is sampled every 1 ms and all profiles of the entire execution of sphinx are down

sampled to 1000 data points. The normalized IPC at point i is calculated as IPCcorun i

IPCsolo i
.

Therefore, the closer the normalized IPC to 1, the less the degradation. In Figure 6.17, the

line denoting the original sledge shows phase-level changes of the IPC degradation due to

contention. For example, around samples 100 to 200, and 300 to 400, there are noticeable

phases of degradation increase. Also the degradation is less significant during the later

half of the execution. Figure 6.17 also clearly demonstrates the IPC improvement achieved

by RN-Runtime along the entire execution of sphinx. Instead of around 60%-70% of the

normalized IPC when running with the original sledge , Reactive-Niceness improves the

normalized IPC to above 80% through most of the execution.

Similar to Figure 6.17, Figure 6.18 presents sphinx’s normalized IPC when it is running

with sledge using targeted heuristics (conservative 90 configuration), also compar-

ing to its normalized IPC when running with the original sledge. Despite the distinctive

phases of varying levels of degradation when running with the original sledge as discussed

previously (for example, samples 100-200 and 300-400), targeted heuristic consistently

guarantees around 90% IPC for sphinx through the entire execution. This is different from

the simple heuristic shown Figure 6.17 where the improved normalized IPC fluctuates be-

101

14

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 100 200 300 400 500 600 700 800 900 1000

N
o

rm
a

liz
e

d
 I

P
C

time

w/ original sledge
w/ w/ sledge on RN-Runtime, targeted heuristic

Figure 6.18: Sphinx normalized IPC with original sledge and with sledge with RN H2

tween 70% and 90%. This comparison highlights the difference between the simple and

targeted heuristics. While simple is effective in improving the QoS, targeted heuristic

is effective in adapting, achieving and maintaining a stable QoS level as specified.

Similar to Figures 6.17 and 6.18, Figures 6.19 and 6.20 present the normalized IPC of

sphinx when it is running with the original milc, as well as milc with Reactive-Niceness. In

Figures 6.19 and 6.20, the RN-Runtime for milc uses the simple heuristic and targeted

heuristic respectively. The IPC of sphinx when running with the original milc demon-

strates the varying levels of contention and degradation. For example, during samples 600

to 800, the degradation is significantly smaller (normalized IPC close to 1) than the rest of

the execution. A few samples with normalized IPC higher than 1 are due to aliasing of down-

sampling. In this set of experiments, targeted heuristic is configured as conservative 90,

meaning RN-Runtime aims at less than 10% of the QoS degradation for sphinx. Simple

heuristic is configured with QoS biased configuration to achieve the similar QoS goal as

targeted. Figures 6.17 and 6.18 demonstrate the effectiveness of Reactive-Niceness. The

QoS of sphinx is significantly improved after applying RN to corunning milc; the normal-

ized IPC of sphinx is stable and between 0.9 and 1.

Figure 6.21 presents the corresponding average nap duration of milc for every 2 ms’ ex-

ecution, decided dynamically by RN-Runtime based on dynamic contention detection. The

longer the nap duration, the lower the utilization. Figure 6.21 shows that simple heuristic

102

Evaluation: RQ (Simple) vs. RQ (Targeted)
N

or
m

al
iz

ed

IP
C

N
or

m
al

iz
ed

IP

C

QoS when colocated with
the original low priority

QoS when RQ (simple) is
applied to low priority

sphinx: high priority
sledge: low priority

Friday, March 29, 13

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 100 200 300 400 500 600 700 800 900 1000

N
o

rm
a

liz
e

d
 I

P
C

time

w/ original sledge
w/ sledge on RN-Runtime, simple heuristic

Figure 6.17: Sphinx normalized IPC with original sledge and with sledge with RN H1

balance configuration and sphinx is using ref input. To calculate the normalized IPC, we

collect the IPC profiles of sphinx when it is running alone (solo) and running with sledge.

IPC is sampled every 1 ms and all profiles of the entire execution of sphinx are down

sampled to 1000 data points. The normalized IPC at point i is calculated as IPCcorun i

IPCsolo i
.

Therefore, the closer the normalized IPC to 1, the less the degradation. In Figure 6.17, the

line denoting the original sledge shows phase-level changes of the IPC degradation due to

contention. For example, around samples 100 to 200, and 300 to 400, there are noticeable

phases of degradation increase. Also the degradation is less significant during the later

half of the execution. Figure 6.17 also clearly demonstrates the IPC improvement achieved

by RN-Runtime along the entire execution of sphinx. Instead of around 60%-70% of the

normalized IPC when running with the original sledge , Reactive-Niceness improves the

normalized IPC to above 80% through most of the execution.

Similar to Figure 6.17, Figure 6.18 presents sphinx’s normalized IPC when it is running

with sledge using targeted heuristics (conservative 90 configuration), also compar-

ing to its normalized IPC when running with the original sledge. Despite the distinctive

phases of varying levels of degradation when running with the original sledge as discussed

previously (for example, samples 100-200 and 300-400), targeted heuristic consistently

guarantees around 90% IPC for sphinx through the entire execution. This is different from

the simple heuristic shown Figure 6.17 where the improved normalized IPC fluctuates be-

101

14

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 100 200 300 400 500 600 700 800 900 1000

N
o

rm
a

liz
e

d
 I

P
C

time

w/ original sledge
w/ w/ sledge on RN-Runtime, targeted heuristic

Figure 6.18: Sphinx normalized IPC with original sledge and with sledge with RN H2

tween 70% and 90%. This comparison highlights the difference between the simple and

targeted heuristics. While simple is effective in improving the QoS, targeted heuristic

is effective in adapting, achieving and maintaining a stable QoS level as specified.

Similar to Figures 6.17 and 6.18, Figures 6.19 and 6.20 present the normalized IPC of

sphinx when it is running with the original milc, as well as milc with Reactive-Niceness. In

Figures 6.19 and 6.20, the RN-Runtime for milc uses the simple heuristic and targeted

heuristic respectively. The IPC of sphinx when running with the original milc demon-

strates the varying levels of contention and degradation. For example, during samples 600

to 800, the degradation is significantly smaller (normalized IPC close to 1) than the rest of

the execution. A few samples with normalized IPC higher than 1 are due to aliasing of down-

sampling. In this set of experiments, targeted heuristic is configured as conservative 90,

meaning RN-Runtime aims at less than 10% of the QoS degradation for sphinx. Simple

heuristic is configured with QoS biased configuration to achieve the similar QoS goal as

targeted. Figures 6.17 and 6.18 demonstrate the effectiveness of Reactive-Niceness. The

QoS of sphinx is significantly improved after applying RN to corunning milc; the normal-

ized IPC of sphinx is stable and between 0.9 and 1.

Figure 6.21 presents the corresponding average nap duration of milc for every 2 ms’ ex-

ecution, decided dynamically by RN-Runtime based on dynamic contention detection. The

longer the nap duration, the lower the utilization. Figure 6.21 shows that simple heuristic

102

Evaluation: RQ (Simple) vs. RQ (Targeted)
N

or
m

al
iz

ed

IP
C

N
or

m
al

iz
ed

IP

C

QoS when colocated with
the original low priority

QoS when RQ (simple) is
applied to low priority

QoS when RQ (targeted) is
applied to low priority

sphinx: high priority
sledge: low priority

Friday, March 29, 13

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 100 200 300 400 500 600 700 800 900 1000

N
o

rm
a

liz
e

d
 I

P
C

time

w/ original sledge
w/ sledge on RN-Runtime, simple heuristic

Figure 6.17: Sphinx normalized IPC with original sledge and with sledge with RN H1

balance configuration and sphinx is using ref input. To calculate the normalized IPC, we

collect the IPC profiles of sphinx when it is running alone (solo) and running with sledge.

IPC is sampled every 1 ms and all profiles of the entire execution of sphinx are down

sampled to 1000 data points. The normalized IPC at point i is calculated as IPCcorun i

IPCsolo i
.

Therefore, the closer the normalized IPC to 1, the less the degradation. In Figure 6.17, the

line denoting the original sledge shows phase-level changes of the IPC degradation due to

contention. For example, around samples 100 to 200, and 300 to 400, there are noticeable

phases of degradation increase. Also the degradation is less significant during the later

half of the execution. Figure 6.17 also clearly demonstrates the IPC improvement achieved

by RN-Runtime along the entire execution of sphinx. Instead of around 60%-70% of the

normalized IPC when running with the original sledge , Reactive-Niceness improves the

normalized IPC to above 80% through most of the execution.

Similar to Figure 6.17, Figure 6.18 presents sphinx’s normalized IPC when it is running

with sledge using targeted heuristics (conservative 90 configuration), also compar-

ing to its normalized IPC when running with the original sledge. Despite the distinctive

phases of varying levels of degradation when running with the original sledge as discussed

previously (for example, samples 100-200 and 300-400), targeted heuristic consistently

guarantees around 90% IPC for sphinx through the entire execution. This is different from

the simple heuristic shown Figure 6.17 where the improved normalized IPC fluctuates be-

101

14

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 100 200 300 400 500 600 700 800 900 1000

N
o

rm
a

liz
e

d
 I

P
C

time

w/ original sledge
w/ w/ sledge on RN-Runtime, targeted heuristic

Figure 6.18: Sphinx normalized IPC with original sledge and with sledge with RN H2

tween 70% and 90%. This comparison highlights the difference between the simple and

targeted heuristics. While simple is effective in improving the QoS, targeted heuristic

is effective in adapting, achieving and maintaining a stable QoS level as specified.

Similar to Figures 6.17 and 6.18, Figures 6.19 and 6.20 present the normalized IPC of

sphinx when it is running with the original milc, as well as milc with Reactive-Niceness. In

Figures 6.19 and 6.20, the RN-Runtime for milc uses the simple heuristic and targeted

heuristic respectively. The IPC of sphinx when running with the original milc demon-

strates the varying levels of contention and degradation. For example, during samples 600

to 800, the degradation is significantly smaller (normalized IPC close to 1) than the rest of

the execution. A few samples with normalized IPC higher than 1 are due to aliasing of down-

sampling. In this set of experiments, targeted heuristic is configured as conservative 90,

meaning RN-Runtime aims at less than 10% of the QoS degradation for sphinx. Simple

heuristic is configured with QoS biased configuration to achieve the similar QoS goal as

targeted. Figures 6.17 and 6.18 demonstrate the effectiveness of Reactive-Niceness. The

QoS of sphinx is significantly improved after applying RN to corunning milc; the normal-

ized IPC of sphinx is stable and between 0.9 and 1.

Figure 6.21 presents the corresponding average nap duration of milc for every 2 ms’ ex-

ecution, decided dynamically by RN-Runtime based on dynamic contention detection. The

longer the nap duration, the lower the utilization. Figure 6.21 shows that simple heuristic

102

Evaluation: RQ (Simple) vs. RQ (Targeted)

RQ (Targeted)
achieves more
accurate QoS
control than
RQ (simple)

N
or

m
al

iz
ed

IP

C
N

or
m

al
iz

ed

IP
C

QoS when colocated with
the original low priority

QoS when RQ (simple) is
applied to low priority

QoS when RQ (targeted) is
applied to low priority

sphinx: high priority
sledge: low priority

Friday, March 29, 13

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 100 200 300 400 500 600 700 800 900 1000

N
o
rm

a
liz

e
d
 I
P

C

time

w/ original milc
w/ RN-milc-simple

Figure 6.19: Sphinx normalized IPC with original milc and with
simple milc

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 100 200 300 400 500 600 700 800 900 1000

N
o
rm

a
liz

e
d
 I
P

C

time

w/ original milc
w/ RN-milc-simple

Figure 6.20: Sphinx normalized IPC with original milc and with
targeted milc

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 100 200 300 400 500 600 700 800 900 1000

a
ve

ra
g

e
 n

a
p

 d
u

ra
tio

n

time

simple
targeted

Figure 6.21: Average nap duration for milc with simple vs. milc with
targeted

105

15

N
or

m
al

iz
ed

 IP
C

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 100 200 300 400 500 600 700 800 900 1000

N
o

rm
a

liz
e

d
 I

P
C

time

w/ original milc
w/ RN-milc-simple

Figure 6.19: Sphinx normalized IPC with original milc and with
simple milc

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 100 200 300 400 500 600 700 800 900 1000

N
o

rm
a

liz
e

d
 I

P
C

time

w/ original milc
w/ RN-milc-simple

Figure 6.20: Sphinx normalized IPC with original milc and with
targeted milc

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 100 200 300 400 500 600 700 800 900 1000

a
ve

ra
g
e
 n

a
p
 d

u
ra

tio
n

time

simple
targeted

Figure 6.21: Average nap duration for milc with simple vs. milc with
targeted

105

Evaluation: RQ (Simple) vs. RQ (Targeted)

sphinx: high priority
milc: low priority

Friday, March 29, 13

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 100 200 300 400 500 600 700 800 900 1000

N
o
rm

a
liz

e
d
 I
P

C

time

w/ original milc
w/ RN-milc-simple

Figure 6.19: Sphinx normalized IPC with original milc and with
simple milc

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 100 200 300 400 500 600 700 800 900 1000

N
o
rm

a
liz

e
d
 I
P

C

time

w/ original milc
w/ RN-milc-simple

Figure 6.20: Sphinx normalized IPC with original milc and with
targeted milc

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 100 200 300 400 500 600 700 800 900 1000

a
ve

ra
g

e
 n

a
p

 d
u

ra
tio

n

time

simple
targeted

Figure 6.21: Average nap duration for milc with simple vs. milc with
targeted

105

15

N
or

m
al

iz
ed

 IP
C

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 100 200 300 400 500 600 700 800 900 1000

N
o

rm
a

liz
e

d
 I

P
C

time

w/ original milc
w/ RN-milc-simple

Figure 6.19: Sphinx normalized IPC with original milc and with
simple milc

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 100 200 300 400 500 600 700 800 900 1000

N
o

rm
a

liz
e

d
 I

P
C

time

w/ original milc
w/ RN-milc-simple

Figure 6.20: Sphinx normalized IPC with original milc and with
targeted milc

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 100 200 300 400 500 600 700 800 900 1000

a
ve

ra
g
e
 n

a
p
 d

u
ra

tio
n

time

simple
targeted

Figure 6.21: Average nap duration for milc with simple vs. milc with
targeted

105

QoS when
colocated w/

original

Evaluation: RQ (Simple) vs. RQ (Targeted)

sphinx: high priority
milc: low priority

Friday, March 29, 13

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 100 200 300 400 500 600 700 800 900 1000

N
o
rm

a
liz

e
d
 I
P

C

time

w/ original milc
w/ RN-milc-simple

Figure 6.19: Sphinx normalized IPC with original milc and with
simple milc

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 100 200 300 400 500 600 700 800 900 1000

N
o
rm

a
liz

e
d
 I
P

C

time

w/ original milc
w/ RN-milc-simple

Figure 6.20: Sphinx normalized IPC with original milc and with
targeted milc

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 100 200 300 400 500 600 700 800 900 1000

a
ve

ra
g

e
 n

a
p

 d
u

ra
tio

n

time

simple
targeted

Figure 6.21: Average nap duration for milc with simple vs. milc with
targeted

105

15

N
or

m
al

iz
ed

 IP
C

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 100 200 300 400 500 600 700 800 900 1000

N
o

rm
a

liz
e

d
 I

P
C

time

w/ original milc
w/ RN-milc-simple

Figure 6.19: Sphinx normalized IPC with original milc and with
simple milc

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 100 200 300 400 500 600 700 800 900 1000

N
o

rm
a

liz
e

d
 I

P
C

time

w/ original milc
w/ RN-milc-simple

Figure 6.20: Sphinx normalized IPC with original milc and with
targeted milc

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 100 200 300 400 500 600 700 800 900 1000

a
ve

ra
g
e
 n

a
p
 d

u
ra

tio
n

time

simple
targeted

Figure 6.21: Average nap duration for milc with simple vs. milc with
targeted

105

QoS when
colocated w/

original

QoS when using RQ (simple)

Evaluation: RQ (Simple) vs. RQ (Targeted)

sphinx: high priority
milc: low priority

Friday, March 29, 13

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 100 200 300 400 500 600 700 800 900 1000

N
o
rm

a
liz

e
d
 I
P

C

time

w/ original milc
w/ RN-milc-simple

Figure 6.19: Sphinx normalized IPC with original milc and with
simple milc

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 100 200 300 400 500 600 700 800 900 1000

N
o
rm

a
liz

e
d
 I
P

C

time

w/ original milc
w/ RN-milc-simple

Figure 6.20: Sphinx normalized IPC with original milc and with
targeted milc

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 100 200 300 400 500 600 700 800 900 1000

a
ve

ra
g

e
 n

a
p

 d
u

ra
tio

n

time

simple
targeted

Figure 6.21: Average nap duration for milc with simple vs. milc with
targeted

105

15

N
or

m
al

iz
ed

 IP
C

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 100 200 300 400 500 600 700 800 900 1000

N
o

rm
a

liz
e

d
 I

P
C

time

w/ original milc
w/ RN-milc-simple

Figure 6.19: Sphinx normalized IPC with original milc and with
simple milc

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 100 200 300 400 500 600 700 800 900 1000

N
o

rm
a

liz
e

d
 I

P
C

time

w/ original milc
w/ RN-milc-simple

Figure 6.20: Sphinx normalized IPC with original milc and with
targeted milc

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 100 200 300 400 500 600 700 800 900 1000

a
ve

ra
g
e
 n

a
p
 d

u
ra

tio
n

time

simple
targeted

Figure 6.21: Average nap duration for milc with simple vs. milc with
targeted

105

QoS when
colocated w/

original

QoS when using RQ (simple) QoS when using RQ (targeted)

Evaluation: RQ (Simple) vs. RQ (Targeted)

sphinx: high priority
milc: low priority

Friday, March 29, 13

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 100 200 300 400 500 600 700 800 900 1000

N
o
rm

a
liz

e
d
 I
P

C

time

w/ original milc
w/ RN-milc-simple

Figure 6.19: Sphinx normalized IPC with original milc and with
simple milc

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 100 200 300 400 500 600 700 800 900 1000

N
o
rm

a
liz

e
d
 I
P

C

time

w/ original milc
w/ RN-milc-simple

Figure 6.20: Sphinx normalized IPC with original milc and with
targeted milc

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 100 200 300 400 500 600 700 800 900 1000

a
ve

ra
g

e
 n

a
p

 d
u

ra
tio

n

time

simple
targeted

Figure 6.21: Average nap duration for milc with simple vs. milc with
targeted

105

15

N
or

m
al

iz
ed

 IP
C

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 100 200 300 400 500 600 700 800 900 1000

N
o

rm
a

liz
e

d
 I

P
C

time

w/ original milc
w/ RN-milc-simple

Figure 6.19: Sphinx normalized IPC with original milc and with
simple milc

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 100 200 300 400 500 600 700 800 900 1000

N
o

rm
a

liz
e

d
 I

P
C

time

w/ original milc
w/ RN-milc-simple

Figure 6.20: Sphinx normalized IPC with original milc and with
targeted milc

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 100 200 300 400 500 600 700 800 900 1000

a
ve

ra
g
e
 n

a
p
 d

u
ra

tio
n

time

simple
targeted

Figure 6.21: Average nap duration for milc with simple vs. milc with
targeted

105

QoS when
colocated w/

original

QoS when using RQ (simple) QoS when using RQ (targeted)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 100 200 300 400 500 600 700 800 900 1000

N
o
rm

a
liz

e
d
 I
P

C

time

w/ original milc
w/ RN-milc-simple

Figure 6.19: Sphinx normalized IPC with original milc and with
simple milc

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 100 200 300 400 500 600 700 800 900 1000

N
o
rm

a
liz

e
d
 I
P

C

time

w/ original milc
w/ RN-milc-simple

Figure 6.20: Sphinx normalized IPC with original milc and with
targeted milc

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 100 200 300 400 500 600 700 800 900 1000

a
ve

ra
g
e

 n
a
p

 d
u
ra

tio
n

time

simple
targeted

Figure 6.21: Average nap duration for milc with simple vs. milc with
targeted

105

N
ap

 D
ur

at
io

n

Nap duration for RQ (simple)

Nap duration for RQ (targeted)

Evaluation: RQ (Simple) vs. RQ (Targeted)

sphinx: high priority
milc: low priority

Friday, March 29, 13

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 100 200 300 400 500 600 700 800 900 1000

N
o
rm

a
liz

e
d
 I
P

C

time

w/ original milc
w/ RN-milc-simple

Figure 6.19: Sphinx normalized IPC with original milc and with
simple milc

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 100 200 300 400 500 600 700 800 900 1000

N
o
rm

a
liz

e
d
 I
P

C

time

w/ original milc
w/ RN-milc-simple

Figure 6.20: Sphinx normalized IPC with original milc and with
targeted milc

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 100 200 300 400 500 600 700 800 900 1000

a
ve

ra
g

e
 n

a
p

 d
u

ra
tio

n

time

simple
targeted

Figure 6.21: Average nap duration for milc with simple vs. milc with
targeted

105

Both effectively reduce sphinx’s performance degradation

Targeted is better for improving utilization than Simple
15

N
or

m
al

iz
ed

 IP
C

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 100 200 300 400 500 600 700 800 900 1000

N
o

rm
a

liz
e

d
 I

P
C

time

w/ original milc
w/ RN-milc-simple

Figure 6.19: Sphinx normalized IPC with original milc and with
simple milc

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 100 200 300 400 500 600 700 800 900 1000

N
o

rm
a

liz
e

d
 I

P
C

time

w/ original milc
w/ RN-milc-simple

Figure 6.20: Sphinx normalized IPC with original milc and with
targeted milc

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 100 200 300 400 500 600 700 800 900 1000

a
ve

ra
g
e
 n

a
p
 d

u
ra

tio
n

time

simple
targeted

Figure 6.21: Average nap duration for milc with simple vs. milc with
targeted

105

QoS when
colocated w/

original

QoS when using RQ (simple) QoS when using RQ (targeted)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 100 200 300 400 500 600 700 800 900 1000

N
o
rm

a
liz

e
d
 I
P

C

time

w/ original milc
w/ RN-milc-simple

Figure 6.19: Sphinx normalized IPC with original milc and with
simple milc

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 100 200 300 400 500 600 700 800 900 1000

N
o
rm

a
liz

e
d
 I
P

C

time

w/ original milc
w/ RN-milc-simple

Figure 6.20: Sphinx normalized IPC with original milc and with
targeted milc

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 100 200 300 400 500 600 700 800 900 1000

a
ve

ra
g
e

 n
a
p

 d
u
ra

tio
n

time

simple
targeted

Figure 6.21: Average nap duration for milc with simple vs. milc with
targeted

105

N
ap

 D
ur

at
io

n

Nap duration for RQ (simple)

Nap duration for RQ (targeted)

Evaluation: RQ (Simple) vs. RQ (Targeted)

sphinx: high priority
milc: low priority

Friday, March 29, 13

Evaluation

16

 1x

lbm sphinx bzip milc namd

N
o

rm
al

iz
ed

 Q
o

S

base
util_bias
balanced
QoS_bias

 0.4x

 0.5x

 0.6x

 0.7x

 0.8x

 0.9x

Figure 7. QoS of each benchmark co-
running with sledge, normalized to solo
QoS. (simple)

 0.8x

 0.9x

 1x

sphinx bzip milc namd

N
o

rm
al

iz
ed

 Q
o

S

base
util_bias
balanced
QoS_bias

 0.4x

 0.5x

 0.6x

 0.7x

Figure 8. QoS of each benchmark co-
running with lbm. (simple)

 0.8x

 0.9x

 1x

lbm sphinx bzip namd

N
o

rm
al

iz
ed

 Q
o

S

base
util_bias
balanced
QoS_bias

 0.4x

 0.5x

 0.6x

 0.7x

Figure 9. QoS of each benchmark co-
running with milc. (simple)

+namd

U
ti

li
za

ti
o

n

util_bias
balanced
QoS_bias

 0%
 10%
 20%
 30%
 40%
 50%
 60%
 70%
 80%
 90%

 100%

+lbm +sphinx +bzip +milc

Figure 10. Utilization of sledge with each
configuration. (simple)

+bzip +milc +namd

U
ti

li
za

ti
o

n

util_bias
balanced
QoS_bias

 0%
 10%
 20%
 30%
 40%
 50%
 60%
 70%
 80%
 90%

 100%

+sphinx

Figure 11. Utilization of lbm with each con-
figuration. (simple)

+sphinx +bzip +namd

U
ti

li
za

ti
o

n

util_bias
balanced
QoS_bias

 0%
 10%
 20%
 30%
 40%
 50%
 60%
 70%
 80%
 90%

 100%

+lbm

Figure 12. Utilization of milc with each
configuration. (simple)

 1x

lbm sphinx bzip milc namd

N
o

rm
al

iz
ed

 Q
o

S

base
conserv_90
relaxed_90
conserv_80

 0.4x

 0.5x

 0.6x

 0.7x

 0.8x

 0.9x

Figure 13. QoS of each benchmark co-
running with sledge, normalized to solo
QoS. (targeted)

 0.8x

 0.9x

 1x

sphinx bzip milc namd
N

o
rm

al
iz

ed
 Q

o
S

base
conserv_90
relaxed_90
conserv_80

 0.4x

 0.5x

 0.6x

 0.7x

Figure 14. QoS of each benchmark co-
running with lbm. (targeted)

 0.8x

 0.9x

 1x

lbm sphinx bzip namd

N
o

rm
al

iz
ed

 Q
o

S

base
conserv_90
relaxed_90
conserv_80

 0.4x

 0.5x

 0.6x

 0.7x

Figure 15. QoS of each benchmark co-
running with milc. (targeted)

nmd

U
ti

li
za

ti
o

n

conserv_90
relaxed_90
conserv_80

 0%
 10%
 20%
 30%
 40%
 50%
 60%
 70%
 80%
 90%

 100%

lbm sphinx bzip milc

Figure 16. Utilization of sledge with each
configuration. (targeted)

bzip milc nmd

U
ti

li
za

ti
o

n

conserv_90
relaxed_90
conserv_80

 0%
 10%
 20%
 30%
 40%
 50%
 60%
 70%
 80%
 90%

 100%

sphinx

Figure 17. Utilization of lbm with each con-
figuration. (targeted)

sphinx bzip nmd
U

ti
li

za
ti

o
n

conserv_90
relaxed_90
conserv_80

 0%
 10%
 20%
 30%
 40%
 50%
 60%
 70%
 80%
 90%

 100%

lbm

Figure 18. Utilization of milc with each
configuration. (targeted)

7 2011/12/19

 1x

lbm sphinx bzip milc namd

N
o

rm
al

iz
ed

 Q
o

S

base
util_bias
balanced
QoS_bias

 0.4x

 0.5x

 0.6x

 0.7x

 0.8x

 0.9x

Figure 7. QoS of each benchmark co-
running with sledge, normalized to solo
QoS. (simple)

 0.8x

 0.9x

 1x

sphinx bzip milc namd

N
o

rm
al

iz
ed

 Q
o

S

base
util_bias
balanced
QoS_bias

 0.4x

 0.5x

 0.6x

 0.7x

Figure 8. QoS of each benchmark co-
running with lbm. (simple)

 0.8x

 0.9x

 1x

lbm sphinx bzip namd

N
o

rm
al

iz
ed

 Q
o

S

base
util_bias
balanced
QoS_bias

 0.4x

 0.5x

 0.6x

 0.7x

Figure 9. QoS of each benchmark co-
running with milc. (simple)

+namd

U
ti

li
za

ti
o
n

util_bias
balanced
QoS_bias

 0%
 10%
 20%
 30%
 40%
 50%
 60%
 70%
 80%
 90%

 100%

+lbm +sphinx +bzip +milc

Figure 10. Utilization of sledge with each
configuration. (simple)

+bzip +milc +namd

U
ti

li
za

ti
o
n

util_bias
balanced
QoS_bias

 0%
 10%
 20%
 30%
 40%
 50%
 60%
 70%
 80%
 90%

 100%

+sphinx

Figure 11. Utilization of lbm with each con-
figuration. (simple)

+sphinx +bzip +namd

U
ti

li
za

ti
o
n

util_bias
balanced
QoS_bias

 0%
 10%
 20%
 30%
 40%
 50%
 60%
 70%
 80%
 90%

 100%

+lbm

Figure 12. Utilization of milc with each
configuration. (simple)

 1x

lbm sphinx bzip milc namd

N
o
rm

al
iz

ed
 Q

o
S

base
conserv_90
relaxed_90
conserv_80

 0.4x

 0.5x

 0.6x

 0.7x

 0.8x

 0.9x

Figure 13. QoS of each benchmark co-
running with sledge, normalized to solo
QoS. (targeted)

 0.8x

 0.9x

 1x

sphinx bzip milc namd

N
o
rm

al
iz

ed
 Q

o
S

base
conserv_90
relaxed_90
conserv_80

 0.4x

 0.5x

 0.6x

 0.7x

Figure 14. QoS of each benchmark co-
running with lbm. (targeted)

 0.8x

 0.9x

 1x

lbm sphinx bzip namd

N
o
rm

al
iz

ed
 Q

o
S

base
conserv_90
relaxed_90
conserv_80

 0.4x

 0.5x

 0.6x

 0.7x

Figure 15. QoS of each benchmark co-
running with milc. (targeted)

nmd

U
ti

li
za

ti
o

n

conserv_90
relaxed_90
conserv_80

 0%
 10%
 20%
 30%
 40%
 50%
 60%
 70%
 80%
 90%

 100%

lbm sphinx bzip milc

Figure 16. Utilization of sledge with each
configuration. (targeted)

bzip milc nmd

U
ti

li
za

ti
o

n

conserv_90
relaxed_90
conserv_80

 0%
 10%
 20%
 30%
 40%
 50%
 60%
 70%
 80%
 90%

 100%

sphinx

Figure 17. Utilization of lbm with each con-
figuration. (targeted)

sphinx bzip nmd

U
ti

li
za

ti
o

n

conserv_90
relaxed_90
conserv_80

 0%
 10%
 20%
 30%
 40%
 50%
 60%
 70%
 80%
 90%

 100%

lbm

Figure 18. Utilization of milc with each
configuration. (targeted)

7 2011/12/19

Normalized QoS when
running w/ Sledge (targeted)

Normalized QoS when
running w/ lbm (targeted)

Normalized QoS when
running w/ milc (targeted)

utilization of sledge
(targeted)

utilization of lbm (targeted) utilization of milc
(targeted)

Q
oS

U
til
iz
at
io
n

Friday, March 29, 13

Evaluation

16

 1x

lbm sphinx bzip milc namd

N
o

rm
al

iz
ed

 Q
o

S

base
util_bias
balanced
QoS_bias

 0.4x

 0.5x

 0.6x

 0.7x

 0.8x

 0.9x

Figure 7. QoS of each benchmark co-
running with sledge, normalized to solo
QoS. (simple)

 0.8x

 0.9x

 1x

sphinx bzip milc namd

N
o

rm
al

iz
ed

 Q
o

S

base
util_bias
balanced
QoS_bias

 0.4x

 0.5x

 0.6x

 0.7x

Figure 8. QoS of each benchmark co-
running with lbm. (simple)

 0.8x

 0.9x

 1x

lbm sphinx bzip namd

N
o

rm
al

iz
ed

 Q
o

S

base
util_bias
balanced
QoS_bias

 0.4x

 0.5x

 0.6x

 0.7x

Figure 9. QoS of each benchmark co-
running with milc. (simple)

+namd

U
ti

li
za

ti
o

n

util_bias
balanced
QoS_bias

 0%
 10%
 20%
 30%
 40%
 50%
 60%
 70%
 80%
 90%

 100%

+lbm +sphinx +bzip +milc

Figure 10. Utilization of sledge with each
configuration. (simple)

+bzip +milc +namd

U
ti

li
za

ti
o

n

util_bias
balanced
QoS_bias

 0%
 10%
 20%
 30%
 40%
 50%
 60%
 70%
 80%
 90%

 100%

+sphinx

Figure 11. Utilization of lbm with each con-
figuration. (simple)

+sphinx +bzip +namd

U
ti

li
za

ti
o

n

util_bias
balanced
QoS_bias

 0%
 10%
 20%
 30%
 40%
 50%
 60%
 70%
 80%
 90%

 100%

+lbm

Figure 12. Utilization of milc with each
configuration. (simple)

 1x

lbm sphinx bzip milc namd

N
o

rm
al

iz
ed

 Q
o

S

base
conserv_90
relaxed_90
conserv_80

 0.4x

 0.5x

 0.6x

 0.7x

 0.8x

 0.9x

Figure 13. QoS of each benchmark co-
running with sledge, normalized to solo
QoS. (targeted)

 0.8x

 0.9x

 1x

sphinx bzip milc namd
N

o
rm

al
iz

ed
 Q

o
S

base
conserv_90
relaxed_90
conserv_80

 0.4x

 0.5x

 0.6x

 0.7x

Figure 14. QoS of each benchmark co-
running with lbm. (targeted)

 0.8x

 0.9x

 1x

lbm sphinx bzip namd

N
o

rm
al

iz
ed

 Q
o

S

base
conserv_90
relaxed_90
conserv_80

 0.4x

 0.5x

 0.6x

 0.7x

Figure 15. QoS of each benchmark co-
running with milc. (targeted)

nmd

U
ti

li
za

ti
o

n

conserv_90
relaxed_90
conserv_80

 0%
 10%
 20%
 30%
 40%
 50%
 60%
 70%
 80%
 90%

 100%

lbm sphinx bzip milc

Figure 16. Utilization of sledge with each
configuration. (targeted)

bzip milc nmd

U
ti

li
za

ti
o

n

conserv_90
relaxed_90
conserv_80

 0%
 10%
 20%
 30%
 40%
 50%
 60%
 70%
 80%
 90%

 100%

sphinx

Figure 17. Utilization of lbm with each con-
figuration. (targeted)

sphinx bzip nmd
U

ti
li

za
ti

o
n

conserv_90
relaxed_90
conserv_80

 0%
 10%
 20%
 30%
 40%
 50%
 60%
 70%
 80%
 90%

 100%

lbm

Figure 18. Utilization of milc with each
configuration. (targeted)

7 2011/12/19

 1x

lbm sphinx bzip milc namd

N
o

rm
al

iz
ed

 Q
o

S

base
util_bias
balanced
QoS_bias

 0.4x

 0.5x

 0.6x

 0.7x

 0.8x

 0.9x

Figure 7. QoS of each benchmark co-
running with sledge, normalized to solo
QoS. (simple)

 0.8x

 0.9x

 1x

sphinx bzip milc namd

N
o

rm
al

iz
ed

 Q
o

S

base
util_bias
balanced
QoS_bias

 0.4x

 0.5x

 0.6x

 0.7x

Figure 8. QoS of each benchmark co-
running with lbm. (simple)

 0.8x

 0.9x

 1x

lbm sphinx bzip namd

N
o

rm
al

iz
ed

 Q
o

S

base
util_bias
balanced
QoS_bias

 0.4x

 0.5x

 0.6x

 0.7x

Figure 9. QoS of each benchmark co-
running with milc. (simple)

+namd

U
ti

li
za

ti
o
n

util_bias
balanced
QoS_bias

 0%
 10%
 20%
 30%
 40%
 50%
 60%
 70%
 80%
 90%

 100%

+lbm +sphinx +bzip +milc

Figure 10. Utilization of sledge with each
configuration. (simple)

+bzip +milc +namd

U
ti

li
za

ti
o
n

util_bias
balanced
QoS_bias

 0%
 10%
 20%
 30%
 40%
 50%
 60%
 70%
 80%
 90%

 100%

+sphinx

Figure 11. Utilization of lbm with each con-
figuration. (simple)

+sphinx +bzip +namd

U
ti

li
za

ti
o
n

util_bias
balanced
QoS_bias

 0%
 10%
 20%
 30%
 40%
 50%
 60%
 70%
 80%
 90%

 100%

+lbm

Figure 12. Utilization of milc with each
configuration. (simple)

 1x

lbm sphinx bzip milc namd

N
o
rm

al
iz

ed
 Q

o
S

base
conserv_90
relaxed_90
conserv_80

 0.4x

 0.5x

 0.6x

 0.7x

 0.8x

 0.9x

Figure 13. QoS of each benchmark co-
running with sledge, normalized to solo
QoS. (targeted)

 0.8x

 0.9x

 1x

sphinx bzip milc namd

N
o
rm

al
iz

ed
 Q

o
S

base
conserv_90
relaxed_90
conserv_80

 0.4x

 0.5x

 0.6x

 0.7x

Figure 14. QoS of each benchmark co-
running with lbm. (targeted)

 0.8x

 0.9x

 1x

lbm sphinx bzip namd

N
o
rm

al
iz

ed
 Q

o
S

base
conserv_90
relaxed_90
conserv_80

 0.4x

 0.5x

 0.6x

 0.7x

Figure 15. QoS of each benchmark co-
running with milc. (targeted)

nmd

U
ti

li
za

ti
o

n

conserv_90
relaxed_90
conserv_80

 0%
 10%
 20%
 30%
 40%
 50%
 60%
 70%
 80%
 90%

 100%

lbm sphinx bzip milc

Figure 16. Utilization of sledge with each
configuration. (targeted)

bzip milc nmd

U
ti

li
za

ti
o

n

conserv_90
relaxed_90
conserv_80

 0%
 10%
 20%
 30%
 40%
 50%
 60%
 70%
 80%
 90%

 100%

sphinx

Figure 17. Utilization of lbm with each con-
figuration. (targeted)

sphinx bzip nmd

U
ti

li
za

ti
o

n

conserv_90
relaxed_90
conserv_80

 0%
 10%
 20%
 30%
 40%
 50%
 60%
 70%
 80%
 90%

 100%

lbm

Figure 18. Utilization of milc with each
configuration. (targeted)

7 2011/12/19

Normalized QoS when
running w/ Sledge (targeted)

Normalized QoS when
running w/ lbm (targeted)

Normalized QoS when
running w/ milc (targeted)

utilization of sledge
(targeted)

utilization of lbm (targeted) utilization of milc
(targeted)

Q
oS

U
til
iz
at
io
n

Friday, March 29, 13

ReQoS: Power efficiency

17

 0.5x

 0.7x

 0.8x

 0.9x

 1x

 1.1x

lbm milc sledge mean

E
x

ec
.

T
im

e
(n

o
rm

.)

base
with nap engine

 0.6x

Figure 26: Overhead of nap engine for low-priority
application.

b
zi

p
2

−
sl

ed
g

e

sp
h

in
x

−
sl

ed
g

e

n
am

d
−

sl
ed

g
e

m
il

c−
lb

m

b
zi

p
2

−
lb

m

sp
h

in
x

−
lb

m

n
am

d
−

lb
m

lb
m

−
m

il
c

b
zi

p
2

−
m

il
c

sp
h

in
x

−
m

il
c

n
am

d
−

m
il

c

m
ea

nN
o

rm
al

iz
ed

 I
P

C
 p

er
 w

at
t

separate machines
RQ (targeted conserv_90)

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

lb
m

−
sl

ed
g

e

m
il

c−
sl

ed
g

e

Figure 27: Efficiency of allowing co-location with
ReQoS vs over-provisioning. (targeted)

three minute time period after the machine wattage stabi-
lizes during each run. The higher the bar, the more energy
efficient. The x-axis shows the workloads, the high-priority
and low-priority application pairs. The first bar for each
workload shows the energy efficiency when using separate
machines for low and high-priority applications; the second
bar shows the energy efficiency of co-locating both high and
low-priority applications using ReQoS with the targeted
policy and the conserv_90 configuration shown in Table 2.
We observe a significant energy efficiency improvement for
many workloads. Application pairs that include less con-
tentious applications, such as namd, produce a greater ben-
efit as there is less napping occurring. Meanwhile, highly
contentious pairs, such as sphinx-lbm, show a more modest
benefit. On average there is a 42% improvement of using Re-
QoS to allow co-location over using two separate machines
for low- and high-priority applications.

5.7 Varying Architecture
To investigate the effectiveness of ReQoS across architec-

conserv_90
relaxed_90
conserv_80

 0.4x

 0.5x

 0.6x

 0.7x

 0.8x

 0.9x

 1x

lb
m

−
sl

ed
g
e

sp
h
in

x
−

sl
ed

g
e

b
zi

p
−

sl
ed

g
e

m
lc

−
sl

ed
g
e

n
m

d
−

sl
ed

g
e

sp
h

in
x
−

lb
m

b
zi

p
−

lb
m

m
lc

−
lb

m

n
m

d
−

lb
m

lb
m

−
m

il
c

sp
h

in
x
−

m
il

c

b
zi

p
−

m
il

c

n
m

d
−

m
il

c

N
o

rm
al

iz
ed

 Q
o

S

base

Figure 28: QoS of each benchmark co-running with
sledge, lbm, and milc. (targeted)

 100%

lb
m

−
sl

ed
g
e

sp
h

in
x

−
sl

ed
g
e

b
zi

p
−

sl
ed

g
e

m
lc

−
sl

ed
g
e

n
m

d
−

sl
ed

g
e

sp
h
in

x
−

lb
m

b
zi

p
−

lb
m

m
lc

−
lb

m

n
m

d
−

lb
m

lb
m

−
m

il
c

sp
h

in
x
−

m
il

c

b
zi

p
−

m
il

c

n
m

d
−

m
il

c

U
ti

li
za

ti
o
n

conserv_90
relaxed_90
conserv_80

 0%
 10%
 20%
 30%
 40%
 50%
 60%
 70%
 80%
 90%

Figure 29: Utilization of sledge, lbm and milc with
each configuration. (targeted)

tures, we performed experiments on a 2.6GHZs Quad Core
AMD Phenom X4 system with 6MB last level cache and
3GB of main memory. This machine is also running Linux
2.6.29.6 and our customized GCC 4.4.6.
Figures 28 and 29 show the results for our targeted heuris-

tic using the same configurations shown in Table 2. As
shown in these figures, ReQoS is also quite effective on this
platform. For both lbm and milc we achieve 80% to 90% uti-
lization while significantly reducing the performance inter-
ference on our high-priority applications. The contentious-
ness of sledge is severe on this processor. For the lbm-
sledge pair, we observe that when lowering the QoS thresh-
old to 80% from 90% we more than double the utilization.
Overall, as shown in Figure 28, our conservative settings
meet and exceed our QoS requirements in all experiments,
and our relaxed configuration satisfies the QoS constraint in
for majority of the applications.

6. RELATED WORK
An important software approach to mitigating contention

is contention aware scheduling [2,4,7,11,15,23,34,37]. Schedul-
ing techniques decide what applications should be co-running
together to improve performance or performance isolation.
Our approach focuses on a complimentary question: after
multiple applications are already scheduled to be running
simultaneously and sharing resource, how to reduce the con-
tention and guarantee their QoS. In addition, different from
scheduling, our approach does not require a balanced mix
of high-contention and low-contention applications since we
directly manipulate the contentiousness of an application
to improve QoS. Even if only contentious co-runners are
left to be scheduled our approach remains effective. Mars
et al. [21] propose a shutter approach to detect contention,
while our approach first identifies contentious code regions
and then applies static compilation techniques to those re-
gions. Yang et. al present Redline [35], an OS technique
to guarantee the QoS of interactive applications on time-
sharing systems. However, we focus on contention among
applications simultaneously executing across multiple cores.
Software solutions to reduce cache contention using page col-
oring/remapping have also been proposed [5, 16, 29]. Most
page coloring methods require significant modifications to
the kernel and the knowledge of the cache design details.
Researchers recently have started to explore using code

transformations and restructuring to improve cache sharing
and reduce contention on multicores [12, 13, 27, 28, 30, 36].
Most such research focuses on compilation techniques to im-
prove cache sharing for a multi-threaded application. Dif-
ferently, our approach manipulates how applications inter-
act with each other in terms of contending for the memory
resources. Hardware techniques such as cache/bandwidth
partitioning and source throttling to improve performance

Friday, March 29, 13

ReQoS:Overhead

Overhead for high-priority application: 1%-2%

18

 0.9x

 1x

sp
h
in

x
−

lb
m

_
C

1

sp
h
in

x
−

lb
m

_
C

2

m
il

c−
lb

m
_
C

1

m
il

c−
lb

m
_
C

2

sp
h
in

x
−

m
il

c_
C

1

sp
h
in

x
−

m
il

c_
C

2

lb
m

−
m

il
c_

C
1

lb
m

−
m

il
c_

C
2

N
o
rm

al
iz

ed
 Q

o
S

baseline
QoS−Compile
ReQoS

 0.4x

 0.5x

 0.6x

 0.7x

 0.8x

Figure 23. QoS of high-priority applications. When carefully
tuned for each workload, QoS-Compile achieves similar QoS as
ReQoS.

sp
h
in

x
−

lb
m

_
C

2

m
il

c−
lb

m
_
C

1

m
il

c−
lb

m
_
C

2

sp
h
in

x
−

m
il

c_
C

1

sp
h
in

x
−

m
il

c_
C

2

lb
m

−
m

il
c_

C
1

lb
m

−
m

il
c_

C
2

m
ea

n

U
ti

li
za

ti
o
n
 QoS−Compile

ReQoS

 0%

 20%

 40%

 60%

 80%

 100%

sp
h
in

x
−

lb
m

_
C

1

Figure 24. Utilization. ReQoS attains higher machine utilization
than QoS-Compile.

sphinx mean

E
x

ec
.

T
im

e
(n

o
rm

.)

baseline native
with monitor

 0.96x
 0.98x

 1x
 1.02x
 1.04x
 1.06x
 1.08x
 1.1x

lbm milc namd bzip2

Figure 25. Overhead of monitoring for high-priority application.

due to its static nature, QoS-Compile also cannot adapt to new sit-
uations such as changes of the co-running high-priority applica-
tions or their QoS requirements. In comparison, ReQoS can adapt
to these changes without any tuning.

5.5 Overhead

Figure 25 presents the performance costs of the monitoring the
QoS of the high-priority application. The overhead is minimal. The
overhead suffered by high-priority applications is less than 1% on
average with a max of 2% in the cases of milc and lbm.

Figure 26 shows the performance overhead of invoking the Nap
Engine to throttle down low-priority applications. The overhead of
probing the Nap Engine is slightly more costly, approaching 5%
for milc. However, the Nap Engine only causes overhead to the
low-priority application, and thus the performance cost is not as
important.

The low cost of our runtime approach for the high-priority
application is due to the fact that the overhead of reading and
recording performance counters at 1 ms granularity is minimal. The
cost is slightly higher for the low-priority application because we
add a lightweight check at the point of every compiler-inserted
marker. However the runtime is only invoked when the marker
is detected (when the identified contentious region is executing)
instead of every 1 ms. Coarsening the granularity can further reduce
these overheads; but the tradeoff must be made between a lower
overhead and a higher penalty for potential delays in detecting
contention as it occurs.

5.6 Energy Efficiency of ReQoS

Figure 27 presents the improved energy efficiency when allowing
co-location with ReQoS. These experiments were performed us-
ing a P3 International Kill A Watt R© power meter connected to
our Quad Core Intel Nehalem machine to measure whole system
watt consumption during execution. For each cluster of bars in the

lbm milc sledge mean

E
x

ec
.

T
im

e
(n

o
rm

.)

baseline
with nap engine

 0.96x
 0.98x

 1x
 1.02x
 1.04x
 1.06x
 1.08x
 1.1x

Figure 26. Overhead of nap engine for low-priority application.

figure, the energy efficiency is calculated by the instructions pro-
cessed per watt for a three minute time period after the machine
wattage stabilizes during each run. The higher the bar, the more
energy efficient. The x-axis shows the workloads, the high-priority
and low-priority application pairs. The first bar for each workload
shows the energy efficiency when using separate machines for low
and high-priority applications; the second bar shows the energy ef-
ficiency of co-locating both high and low-priority applications us-
ing ReQoS with the targeted policy and the conserv 90 con-
figuration shown in Table 2. We observe a significant energy effi-
ciency improvement for many workloads. Application pairs that in-
clude less contentious applications, such as namd, produce a greater
benefit as there is less napping occurring. Meanwhile, highly con-
tentious pairs, such as sphinx-lbm, show a more modest benefit.
On average there is a 47% improvement of using ReQoS to allow
co-location over using two separate machines for low- and high-
priority applications.

5.7 Varying Architecture

To investigate the effectiveness of ReQoS across architectures, we
performed experiments on a 2.6GHZs Quad Core AMD Phenom
X4 system with 6MB last level cache and 3GB of main memory.
This machine is also running Linux 2.6.29.6 and our customized
GCC 4.4.6.

Figures 28 and 29 show the results for our targeted heuristic
using the same configurations shown in Table 2. As shown in these
figures, ReQoS is also quite effective on this platform. For both lbm
and milc we achieve 80% to 90% utilization while significantly
reducing the performance interference to our high-priority applica-
tions. The contentiousness of sledge is severe on this processor.
For the lbm-sledge pair, we observe that when lowering the QoS
threshold to 80% from 90%, we achieve more than 2x improvement
for the utilization. Overall, as shown in Figure 28, our conservative
settings meet and exceed our QoS requirements in all experiments,

 0.9x

 1x

sp
h

in
x
−

lb
m

_
C

1

sp
h

in
x
−

lb
m

_
C

2

m
il

c−
lb

m
_

C
1

m
il

c−
lb

m
_

C
2

sp
h

in
x

−
m

il
c_

C
1

sp
h

in
x

−
m

il
c_

C
2

lb
m

−
m

il
c_

C
1

lb
m

−
m

il
c_

C
2

N
o

rm
al

iz
ed

 Q
o

S

baseline
QoS−Compile
ReQoS

 0.4x

 0.5x

 0.6x

 0.7x

 0.8x

Figure 23. QoS of high-priority applications. When carefully
tuned for each workload, QoS-Compile achieves similar QoS as
ReQoS.

sp
h

in
x
−

lb
m

_
C

2

m
il

c−
lb

m
_

C
1

m
il

c−
lb

m
_

C
2

sp
h

in
x

−
m

il
c_

C
1

sp
h

in
x

−
m

il
c_

C
2

lb
m

−
m

il
c_

C
1

lb
m

−
m

il
c_

C
2

m
ea

n

U
ti

li
za

ti
o

n
 QoS−Compile

ReQoS

 0%

 20%

 40%

 60%

 80%

 100%

sp
h

in
x
−

lb
m

_
C

1

Figure 24. Utilization. ReQoS attains higher machine utilization
than QoS-Compile.

sphinx mean

E
x
ec

.
T

im
e

(n
o
rm

.)

baseline native
with monitor

 0.96x
 0.98x

 1x
 1.02x
 1.04x
 1.06x
 1.08x
 1.1x

lbm milc namd bzip2

Figure 25. Overhead of monitoring for high-priority application.

due to its static nature, QoS-Compile also cannot adapt to new sit-
uations such as changes of the co-running high-priority applica-
tions or their QoS requirements. In comparison, ReQoS can adapt
to these changes without any tuning.

5.5 Overhead

Figure 25 presents the performance costs of the monitoring the
QoS of the high-priority application. The overhead is minimal. The
overhead suffered by high-priority applications is less than 1% on
average with a max of 2% in the cases of milc and lbm.

Figure 26 shows the performance overhead of invoking the Nap
Engine to throttle down low-priority applications. The overhead of
probing the Nap Engine is slightly more costly, approaching 5%
for milc. However, the Nap Engine only causes overhead to the
low-priority application, and thus the performance cost is not as
important.

The low cost of our runtime approach for the high-priority
application is due to the fact that the overhead of reading and
recording performance counters at 1 ms granularity is minimal. The
cost is slightly higher for the low-priority application because we
add a lightweight check at the point of every compiler-inserted
marker. However the runtime is only invoked when the marker
is detected (when the identified contentious region is executing)
instead of every 1 ms. Coarsening the granularity can further reduce
these overheads; but the tradeoff must be made between a lower
overhead and a higher penalty for potential delays in detecting
contention as it occurs.

5.6 Energy Efficiency of ReQoS

Figure 27 presents the improved energy efficiency when allowing
co-location with ReQoS. These experiments were performed us-
ing a P3 International Kill A Watt R© power meter connected to
our Quad Core Intel Nehalem machine to measure whole system
watt consumption during execution. For each cluster of bars in the

lbm milc sledge mean

E
x
ec

.
T

im
e

(n
o
rm

.)

baseline
with nap engine

 0.96x
 0.98x

 1x
 1.02x
 1.04x
 1.06x
 1.08x
 1.1x

Figure 26. Overhead of nap engine for low-priority application.

figure, the energy efficiency is calculated by the instructions pro-
cessed per watt for a three minute time period after the machine
wattage stabilizes during each run. The higher the bar, the more
energy efficient. The x-axis shows the workloads, the high-priority
and low-priority application pairs. The first bar for each workload
shows the energy efficiency when using separate machines for low
and high-priority applications; the second bar shows the energy ef-
ficiency of co-locating both high and low-priority applications us-
ing ReQoS with the targeted policy and the conserv 90 con-
figuration shown in Table 2. We observe a significant energy effi-
ciency improvement for many workloads. Application pairs that in-
clude less contentious applications, such as namd, produce a greater
benefit as there is less napping occurring. Meanwhile, highly con-
tentious pairs, such as sphinx-lbm, show a more modest benefit.
On average there is a 47% improvement of using ReQoS to allow
co-location over using two separate machines for low- and high-
priority applications.

5.7 Varying Architecture

To investigate the effectiveness of ReQoS across architectures, we
performed experiments on a 2.6GHZs Quad Core AMD Phenom
X4 system with 6MB last level cache and 3GB of main memory.
This machine is also running Linux 2.6.29.6 and our customized
GCC 4.4.6.

Figures 28 and 29 show the results for our targeted heuristic
using the same configurations shown in Table 2. As shown in these
figures, ReQoS is also quite effective on this platform. For both lbm
and milc we achieve 80% to 90% utilization while significantly
reducing the performance interference to our high-priority applica-
tions. The contentiousness of sledge is severe on this processor.
For the lbm-sledge pair, we observe that when lowering the QoS
threshold to 80% from 90%, we achieve more than 2x improvement
for the utilization. Overall, as shown in Figure 28, our conservative
settings meet and exceed our QoS requirements in all experiments,

Overhead for low-priority application: < 5%

Friday, March 29, 13

Conclusion

ReQoS

Static compilation, dynamic adaption

Dynamically regulate contention to achieve QoS
target

Flexible, precise QoS management, significant
utilization improvement

19
Friday, March 29, 13

Friday, March 29, 13

