
OPTIMIZING GOOGLE’S WAREHOUSE
SCALE COMPUTERS:

Lingjia Tang, Jason Mars

Xiao Zhang, Robert Hagmann, Robert Hundt, Eric Tune

THE NUMA EXPERIENCE

Monday, March 4, 13

Warehouse Scale Computers

Host large-scale Internet services (websearch, mail, etc)

2

“Datacenters have become as
vital to the functioning of society

as power stations”
- The Economist

Expensive: hundreds of millions of dollars

Monday, March 4, 13

Warehouse Scale Computers

Host large-scale Internet services (websearch, mail, etc)

2
Efficiency is critical

“Datacenters have become as
vital to the functioning of society

as power stations”
- The Economist

Expensive: hundreds of millions of dollars

Monday, March 4, 13

Inefficiencies

Inefficiencies and missed optimization opportunities

3

Monday, March 4, 13

Inefficiencies

Inefficiencies and missed optimization opportunities

3

Lack of understanding of interaction between
applications and micro-architectural features/properties

Monday, March 4, 13

Inefficiencies

Inefficiencies and missed optimization opportunities

3

Lack of understanding of interaction between
applications and micro-architectural features/properties

Micro-architecture properties are abstracted away

a collection of thousands of cores, terabytes of main
memory, petabytes of disk space, etc.

cannot adequately manage micro-architectural resources
and features such as on-chip caches, non-uniform memory
access, off-chip bandwidth, etc.

Monday, March 4, 13

NUMA

4

Monday, March 4, 13

NUMA

NUMA is such a property

Old concept, yet limited understanding in new
domain (new architectural implementations)

Software systems inadequate at effective management

Interaction between emerging applications in modern
large scale WSCs unclear

4

Monday, March 4, 13

NUMA

NUMA is such a property

Old concept, yet limited understanding in new
domain (new architectural implementations)

Software systems inadequate at effective management

Interaction between emerging applications in modern
large scale WSCs unclear

How do we understand the interaction?

4

Monday, March 4, 13

Status-Quo

Performance analysis in controlled environment

narrow focus; cannot replicate all aspects of the real production
environment in a small-scale

miss the big picture

Production study

Monitor datacenters with live services, interpret data

5

Monday, March 4, 13

Challenges in Production Study

Scale and complexity, intertwined performance factors

Unknown factors, change spontaneously (load/user
behavior, etc)

Noisy performance data

Inexplicable performance swing

4x range of average request latency during a week’s time for Gmail
backend

1% performance improvement means millions

6

Monday, March 4, 13

Challenges in Production Study

Scale and complexity, intertwined performance factors

Unknown factors, change spontaneously (load/user
behavior, etc)

Noisy performance data

Inexplicable performance swing

4x range of average request latency during a week’s time for Gmail
backend

1% performance improvement means millions

6

Difficult to reason
about each
individual
microarchitectural
factor’ effect on
applications

Monday, March 4, 13

Methodology

Controlled experiment vs. in-Production study

7

Monday, March 4, 13

Methodology

Controlled experiment vs. in-Production study

7

need both

Production: identify evidence of a performance opportunity

Controlled: isolate and pinpoint the important factors related
to the opportunity.

Monday, March 4, 13

Methodology

Controlled experiment vs. in-Production study

7

NUMA
Performance impact of NUMA

Gmail backend and websearch frontend

need both

Production: identify evidence of a performance opportunity

Controlled: isolate and pinpoint the important factors related
to the opportunity.

Monday, March 4, 13

NUMA (Non-Uniform Memory Access)

8

 DIMM

MEM

Node 2

 L3

8 9 10 11

 L3

12 13 14 15

MEM
 L3

0 1 2 3

Node 0

Node 3

 L3

4 5 6 7

Node 1

MEM

MEM

Figure 1. AMD Barcelona

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

23
‐M
ay

30
‐M
ay

6‐
Ju
n

13
‐Ju
n

20
‐Ju
n

27
‐Ju
n

11
‐Ju
l

18
‐Ju
l

26
‐Ju
l

1‐
Au
g

5‐
Au
g

8‐
Au
g

Pe
rc
en

ta
ge
 o
f S
am

pl
es
 in
 e
ac
h

N
U
M
A
 S
co
re
 R
an
ge

Locality Score:
0.86‐1

Locality Score:
0.67‐0.85

Locality Score:
0.33‐0.66

Figure 2. Percentage of Gmail backend server

jobs within various locality score ranges.

Therefore, each job may be co-located with other applica-
tions on a multicore server. To minimize the influence of
these factors, we collect a large amount of samples of hun-
dreds of Gmail server jobs at a fine granularity every day for
a few months from identically-configured AMD Barcelona
platforms in one production cluster. This AMD Barcelona
platform is shown in Figure 1, on which, four nodes are
asymmetrically connected using bi-directional HyperTrans-
port.

[NUMA Score Distribution] We first investigate the
percentage of Gmail backend server jobs that are
having remote memory accesses. Figure 2 presents the dis-
tribution of jobs in different CPU-memory locality score
(NUMA score) ranges. The locality score of each job on
each machine is sampled periodically (every 5 mins) on
AMD Barcelona in one production cluster. This figure sum-
marizes the sampling results for every Monday in a three-
month span (23/05 to 08/08). Each day, around 65k samples
are collected. On our AMD Barcelona platforms (Figure 1),
the NUMA score ranges from 0.33 (all memory accesses
are 2-hops away) to 1 (all accesses are in the local mem-
ory node). Figure 2 shows that NUMA score distribution
fluctuates. On May 23rd, all jobs are having 100% remote
accesses. The situation improves until June 13rd, when all
samples have locality score higher than 0.66, and then it de-
teriorates again. This fluctuation may be due to job restarts,
machine restarts, kernel updates, other high priority jobs get
scheduled to the machines, etc. But in general, on average,
for a significant amount (often more than 50%) of jobs, all
memory accesses are at least 1 hop away.

[Correlating NUMA Score and CPI] To investigate
if better memory locality necessarily indicates better per-
formance and to quantify the amount of the performance
swing due to local/remote memory accesses, we sam-
ples the Gmail backend server job’s cycles per
instructions (CPI) and correlate a job’s CPI with its local-

ity score. We use CPI for as our performance metric be-
cause 1) we observe that in our production clusters, most
latency-sensitive applications’ average CPI measurements
are fairly consistent across tasks and are well correlated
with the application-level behavior and performance; 2) it
can be sampled with very little overhead in production. Fig-
ures 3 and 4 present the results of the correlation analysis of
all samples collected on two randomly selected Mondays.
The x-axis is the NUMA score bin, and the y-axis shows the
average normalized CPI of all samples that belong to that
NUMA score range. The error bars show the standard de-
viations. These two figures show that the impact of NUMA
on performance (CPI) of Gmail backend server is
quite significant. In Figure 3, the CPI is dropping from
around 1.15x (at score 0.5) to around 1x (at score 1). It
is a 15% difference. Although the standard deviation is
not small due to the influence of other performance fac-
tors, the trend is clear. In Figure 4, the average normal-
ized CPI drops from 1.13x (at score 0.5) to 1x (score 1),
a 14% reduction. This shows that for Gmail backend,
in general, the more local accesses (higher locality score),
the better the CPI performance (lower CPI). In addition to
Gmail on AMD Barcelona, we also conducted similar study
for Web-search frontend on Intel Westmere servers.
The results are presented in Figure 5. Our Intel Westmere
platform is a dual-socket Xeon X5660 NUMA machine,
shown in Figure 9. Each chip has its own integrated mem-
ory controller and buses connecting to memory. Processors
are connected through Intel QuickPath interconnect (QPI).
Similar to Gmail, we observe a significant performance im-
provement when CPU-memory locality improves: on aver-
age the CPI drops from 1.20x to 1x when the locality score
improves from 0.5 to 1.

[Correlating NUMA Score and Application Perfor-
mance] In addition to CPI, we also correlate each Gmail
backend server job’s NUMA score with its user-

.8X

.9X

1.X

1.1X

1.2X

1.3X

1.4X

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

A
ve
ra
ge
 N
or
m
al
iz
ed

 C
PI

CPU‐memory Locality Score

Figure 3. Gmail backend
server on 05/30. Bet-
ter NUMA score correlates
with lower CPI.

.8X

.9X

1.X

1.1X

1.2X

1.3X

1.4X

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

A
ve
ra
ge
 N
or
m
al
iz
ed

 C
PI

CPU‐Memory Locality Score

Figure 4. Gmail backend
server on 06/20 - NUMA
score and CPI.

.9X

1.X

1.1X

1.2X

1.3X

1.4X

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

A
ve
ra
ge
 n
or
m
al
iz
ed

 C
PI

CPU‐memory Locality Score

Figure 5. Web-search Fron-
tend - NUMA score and
CPI.

.5X

.7X

.9X

1.1X

1.3X

1.5X

1.7X

1.9X

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

N
or
m
al
iz
ed

 C
PU

 u
0
liz
a0

on

CPU‐memory Locality Score

Figure 6. Gmail backend
server. Better NUMA score
correlates with better CPU
utilization

.4X

.6X

.8X

1.X

1.2X

1.4X

1.6X

1.8X

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

A
ve
ra
ge
 C
PU

 +
m
e/
Re

qu
es
t

CPU‐memory Locality Score

Figure 7. Gmail backend
server’s CPU time/request
and NUMA score

.2X

.7X

1.2X

1.7X

2.2X

2.7X

3.2X

3.7X

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

A
ve
ra
ge
 R
eq

ue
st
 L
at
en

cy
 (T

L)

CPU‐memory Locality Score

Figure 8. Gmail backend
server’s request latency
(loading threadlist request)
and NUMA score

1. 100% Local access, sharing 1 LLC

12 MB L3

2 3 4 50 1

12 MB L3

8 9 10 116 7 DIMM

X X X XX X

XX X XX X

X X X XX X

X Y Y YX X X Y Y YX X

X X X XX X Y Y Y YY Y

X X X XX XY Y Y YY Y

MEM

M-X

M-X

M-X

M-X M-Y

Node 0 Node 1

MEM

M-X

M-X

M-Y

M-Y

2. 50% Local access, sharing 2 LLCs

3. 0% Local access, sharing 1 LLC

X solo:

X coruns w/ Y:
4. 100 % Local access, sharing LLC w/ sibling

5. 50 % Local access, sharing LLC w/ Y

6. 0 % Local access, sharing LLC w/ sibling

Figure 9. Intel Westmere and the 6 running scenarios in our load-test experiments

AMD Barcelona

‣ local memory
‣ 1-hop away
‣ 2-hop away

Intel Westmere

‣ local memory
‣ 1-hop away

Monday, March 4, 13

Production Study
What’s the performance impact of NUMA in
datacenters?

What data to collect

Metric: to quantify the NUMA status

How to collect them

Profiling and monitoring: lightweight, low overhead, for
large-scale system

How to interpret data

Analysis: Careful correlation and analysis of noisy data
9

Monday, March 4, 13

Metric: A job’s NUMA Score

‣ C[i]: normalized CPU usage for node i

‣ M[j]: normalized memory usage for node j

‣ D(i,j): distance between two nodes i and j

10

datacenter applications in production (10-20%). Our load-
test confirms the production results in general. Moreover,
the load-test experiments reveal surprising results that in
some scenarios, more remote memory accesses can outper-
form more local accesses significantly (by up to 12%) due
to the interaction and tradeoffs between NUMA locality and
cache sharing. To the best of our knowledge, this is the first
work to investigate the interaction between NUMA locality
and cache sharing/contention using large-scale datacenter
applications in production environment and demonstrates
some counter-intuitive insights.

The rest of the paper is organized as follows. Section 2
presents our study in production WSCs. Section 3 presents
our study using single node load-test. Section 4 discusses
our methodology and gained insights. Section 5 presents
related work and Section 6 concludes.

2 Impact of NUMA: Production Cluster-
Level Study

This section presents our cluster-level study in produc-
tion WSCs to quantify the impact of NUMA on large-scale
datacenter applications. We first design a metric to quan-
tify the amount and the average distance of remote accesses
for a job (a running instance of an application), namely,
the CPU-memory locality score or NUMA score. This sim-
ple metric allows us to perform lightweight and continu-
ous profiling of the CPU-memory locality for all jobs in a
large-scale production environment. In addition to the lo-
cality score, we also monitor and sample the performance
of each job, including its cycles per instruction (CPI) and its
application-specific performance metrics such as request la-
tency. Lastly, we conduct correlation analysis based on the
collected production samples to investigate the relationship
between CPU-memory locality and the application perfor-
mance to quantify the performance impact of NUMA.

2.1 Quantifying CPU-Memory Locality

To quantify the CPU-memory locality of an individual
job, we must capture its runtime CPU and memory usage
across different NUMA nodes on a machine. An example of
such NUMA machine is shown in Figure 1. To capture the
CPU usage of a job, we simply aggregate the OS exported
per-CPU usage statistics for each job. To calculate per-
node memory usage for each job, ideally we want to count
memory accesses among all NUMA nodes using hardware
performance counters. However, it is challenging to break
down those counters on a per-CPU basis (i.e. some coun-
ters are counting for a group of CPUs that are siblings in the
same domain) and accurately attribute them to concurrently
running jobs on the same machine. Therefore, we use each
job’s allocated memory page numbers and locations instead,

which are exported by the kernel, to approximate per-node
memory usage. The advantage of this approximation is that
it is lightweight for online profiling with low overhead. We
then normalize per-node CPU-memory usage such that they
sum up to 1 over all NUMA nodes. Let C[1..n] and M [1..n]
respectively denote normalized per-node CPU and memory
usage for a job on a n-node machine, and D(i, j) denotes
distance between two nodes i and j. The CPU-memory lo-

cality score (or NUMA score) of a job can be calculated as
below:

Score =
n∑

i=1

n∑

j=1

C[i] ·M [j] ·
D(i, i)

D(i, j)
(1)

The node distance D(i, j) is a machine-dependent table
which can be populated before hand. In our evaluation, we
use ACPI (Advanced Configuration and Power Innterface)
defined NUMA distance [17] for D(i, j). Specifically, a
node to itself has distance 10, 1-hop away node pair has
distance 20, 2-hop away node pair has distance 30. The lo-
cality score is between 0 and 1. We deploy the profiling
mechanism in production to periodically update and store
the CPU-memory locality score of all jobs.

2.2 Impact of NUMA in Production

Leveraging the locality score as described earlier,
we conduct our study using two large-scale applica-
tions: Gmail backend server and websearch

frontend in production. Both are important applications
in our WSCs. For example, Gmail is one of the biggest
email services in the world. It is also one of the top web-
services that consume an enormous amount of resources
in our production WSCs. Improving its back-end server
performance is critical for improving user experience and
reducing cost in production. In addition to profiling the
CPU-memory locality score (Equation 1) of each Gmail

backend server job, we also sample the performance
of each job for our correlation analysis. As we mentioned
earlier, one challenge for studying the performance impact
of NUMA in production is the existence and influence of
other performance factors in the complex production en-
vironment, such as heterogeneous machines, user migra-
tion, datacenter maintenance, uneven and fluctuating load,
as well as co-location with other applications. For example,
Gmail backend server jobs are run in various data-
centers across the globe on several types of machine plat-
forms that are from different vendors and different genera-
tions. The load for Gmail constantly fluctuates. Although
user accounts migration among machines and datacenters
across the globe is conducted regularly for load balancing,
the load still may not be evenly distributed across machines
within a cluster or across datacenters. In addition, Gmail
backend server jobs are not run in dedicated clusters.

between 0 and 1.

allows low overhead profiling

Monday, March 4, 13

NUMA Score: Example

100% accesses between Node 0 and 3: 0.33

100% between Node 0 and 2: 0.66

100% local : 1

11

 DIMM

MEM

Node 2

 L3

8 9 10 11

 L3

12 13 14 15

MEM
 L3

0 1 2 3

Node 0

Node 3

 L3

4 5 6 7

Node 1

MEM

MEM

Figure 1. AMD Barcelona

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

23
‐M
ay

30
‐M
ay

6‐
Ju
n

13
‐Ju
n

20
‐Ju
n

27
‐Ju
n

11
‐Ju
l

18
‐Ju
l

26
‐Ju
l

1‐
Au
g

5‐
Au
g

8‐
Au
g

Pe
rc
en

ta
ge
 o
f S
am

pl
es
 in
 e
ac
h

N
U
M
A
 S
co
re
 R
an
ge

Locality Score:
0.86‐1

Locality Score:
0.67‐0.85

Locality Score:
0.33‐0.66

Figure 2. Percentage of Gmail backend server

jobs within various locality score ranges.

Therefore, each job may be co-located with other applica-
tions on a multicore server. To minimize the influence of
these factors, we collect a large amount of samples of hun-
dreds of Gmail server jobs at a fine granularity every day for
a few months from identically-configured AMD Barcelona
platforms in one production cluster. This AMD Barcelona
platform is shown in Figure 1, on which, four nodes are
asymmetrically connected using bi-directional HyperTrans-
port.

[NUMA Score Distribution] We first investigate the
percentage of Gmail backend server jobs that are
having remote memory accesses. Figure 2 presents the dis-
tribution of jobs in different CPU-memory locality score
(NUMA score) ranges. The locality score of each job on
each machine is sampled periodically (every 5 mins) on
AMD Barcelona in one production cluster. This figure sum-
marizes the sampling results for every Monday in a three-
month span (23/05 to 08/08). Each day, around 65k samples
are collected. On our AMD Barcelona platforms (Figure 1),
the NUMA score ranges from 0.33 (all memory accesses
are 2-hops away) to 1 (all accesses are in the local mem-
ory node). Figure 2 shows that NUMA score distribution
fluctuates. On May 23rd, all jobs are having 100% remote
accesses. The situation improves until June 13rd, when all
samples have locality score higher than 0.66, and then it de-
teriorates again. This fluctuation may be due to job restarts,
machine restarts, kernel updates, other high priority jobs get
scheduled to the machines, etc. But in general, on average,
for a significant amount (often more than 50%) of jobs, all
memory accesses are at least 1 hop away.

[Correlating NUMA Score and CPI] To investigate
if better memory locality necessarily indicates better per-
formance and to quantify the amount of the performance
swing due to local/remote memory accesses, we sam-
ples the Gmail backend server job’s cycles per
instructions (CPI) and correlate a job’s CPI with its local-

ity score. We use CPI for as our performance metric be-
cause 1) we observe that in our production clusters, most
latency-sensitive applications’ average CPI measurements
are fairly consistent across tasks and are well correlated
with the application-level behavior and performance; 2) it
can be sampled with very little overhead in production. Fig-
ures 3 and 4 present the results of the correlation analysis of
all samples collected on two randomly selected Mondays.
The x-axis is the NUMA score bin, and the y-axis shows the
average normalized CPI of all samples that belong to that
NUMA score range. The error bars show the standard de-
viations. These two figures show that the impact of NUMA
on performance (CPI) of Gmail backend server is
quite significant. In Figure 3, the CPI is dropping from
around 1.15x (at score 0.5) to around 1x (at score 1). It
is a 15% difference. Although the standard deviation is
not small due to the influence of other performance fac-
tors, the trend is clear. In Figure 4, the average normal-
ized CPI drops from 1.13x (at score 0.5) to 1x (score 1),
a 14% reduction. This shows that for Gmail backend,
in general, the more local accesses (higher locality score),
the better the CPI performance (lower CPI). In addition to
Gmail on AMD Barcelona, we also conducted similar study
for Web-search frontend on Intel Westmere servers.
The results are presented in Figure 5. Our Intel Westmere
platform is a dual-socket Xeon X5660 NUMA machine,
shown in Figure 9. Each chip has its own integrated mem-
ory controller and buses connecting to memory. Processors
are connected through Intel QuickPath interconnect (QPI).
Similar to Gmail, we observe a significant performance im-
provement when CPU-memory locality improves: on aver-
age the CPI drops from 1.20x to 1x when the locality score
improves from 0.5 to 1.

[Correlating NUMA Score and Application Perfor-
mance] In addition to CPI, we also correlate each Gmail
backend server job’s NUMA score with its user-

Monday, March 4, 13

NUMA Score: Example

100% accesses between Node 0 and 3: 0.33

100% between Node 0 and 2: 0.66

100% local : 1

11

 DIMM

MEM

Node 2

 L3

8 9 10 11

 L3

12 13 14 15

MEM
 L3

0 1 2 3

Node 0

Node 3

 L3

4 5 6 7

Node 1

MEM

MEM

Figure 1. AMD Barcelona

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

23
‐M
ay

30
‐M
ay

6‐
Ju
n

13
‐Ju
n

20
‐Ju
n

27
‐Ju
n

11
‐Ju
l

18
‐Ju
l

26
‐Ju
l

1‐
Au
g

5‐
Au
g

8‐
Au
g

Pe
rc
en

ta
ge
 o
f S
am

pl
es
 in
 e
ac
h

N
U
M
A
 S
co
re
 R
an
ge

Locality Score:
0.86‐1

Locality Score:
0.67‐0.85

Locality Score:
0.33‐0.66

Figure 2. Percentage of Gmail backend server

jobs within various locality score ranges.

Therefore, each job may be co-located with other applica-
tions on a multicore server. To minimize the influence of
these factors, we collect a large amount of samples of hun-
dreds of Gmail server jobs at a fine granularity every day for
a few months from identically-configured AMD Barcelona
platforms in one production cluster. This AMD Barcelona
platform is shown in Figure 1, on which, four nodes are
asymmetrically connected using bi-directional HyperTrans-
port.

[NUMA Score Distribution] We first investigate the
percentage of Gmail backend server jobs that are
having remote memory accesses. Figure 2 presents the dis-
tribution of jobs in different CPU-memory locality score
(NUMA score) ranges. The locality score of each job on
each machine is sampled periodically (every 5 mins) on
AMD Barcelona in one production cluster. This figure sum-
marizes the sampling results for every Monday in a three-
month span (23/05 to 08/08). Each day, around 65k samples
are collected. On our AMD Barcelona platforms (Figure 1),
the NUMA score ranges from 0.33 (all memory accesses
are 2-hops away) to 1 (all accesses are in the local mem-
ory node). Figure 2 shows that NUMA score distribution
fluctuates. On May 23rd, all jobs are having 100% remote
accesses. The situation improves until June 13rd, when all
samples have locality score higher than 0.66, and then it de-
teriorates again. This fluctuation may be due to job restarts,
machine restarts, kernel updates, other high priority jobs get
scheduled to the machines, etc. But in general, on average,
for a significant amount (often more than 50%) of jobs, all
memory accesses are at least 1 hop away.

[Correlating NUMA Score and CPI] To investigate
if better memory locality necessarily indicates better per-
formance and to quantify the amount of the performance
swing due to local/remote memory accesses, we sam-
ples the Gmail backend server job’s cycles per
instructions (CPI) and correlate a job’s CPI with its local-

ity score. We use CPI for as our performance metric be-
cause 1) we observe that in our production clusters, most
latency-sensitive applications’ average CPI measurements
are fairly consistent across tasks and are well correlated
with the application-level behavior and performance; 2) it
can be sampled with very little overhead in production. Fig-
ures 3 and 4 present the results of the correlation analysis of
all samples collected on two randomly selected Mondays.
The x-axis is the NUMA score bin, and the y-axis shows the
average normalized CPI of all samples that belong to that
NUMA score range. The error bars show the standard de-
viations. These two figures show that the impact of NUMA
on performance (CPI) of Gmail backend server is
quite significant. In Figure 3, the CPI is dropping from
around 1.15x (at score 0.5) to around 1x (at score 1). It
is a 15% difference. Although the standard deviation is
not small due to the influence of other performance fac-
tors, the trend is clear. In Figure 4, the average normal-
ized CPI drops from 1.13x (at score 0.5) to 1x (score 1),
a 14% reduction. This shows that for Gmail backend,
in general, the more local accesses (higher locality score),
the better the CPI performance (lower CPI). In addition to
Gmail on AMD Barcelona, we also conducted similar study
for Web-search frontend on Intel Westmere servers.
The results are presented in Figure 5. Our Intel Westmere
platform is a dual-socket Xeon X5660 NUMA machine,
shown in Figure 9. Each chip has its own integrated mem-
ory controller and buses connecting to memory. Processors
are connected through Intel QuickPath interconnect (QPI).
Similar to Gmail, we observe a significant performance im-
provement when CPU-memory locality improves: on aver-
age the CPI drops from 1.20x to 1x when the locality score
improves from 0.5 to 1.

[Correlating NUMA Score and Application Perfor-
mance] In addition to CPI, we also correlate each Gmail
backend server job’s NUMA score with its user-

Monday, March 4, 13

NUMA Score: Example

100% accesses between Node 0 and 3: 0.33

100% between Node 0 and 2: 0.66

100% local : 1

11

 DIMM

MEM

Node 2

 L3

8 9 10 11

 L3

12 13 14 15

MEM
 L3

0 1 2 3

Node 0

Node 3

 L3

4 5 6 7

Node 1

MEM

MEM

Figure 1. AMD Barcelona

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

23
‐M
ay

30
‐M
ay

6‐
Ju
n

13
‐Ju
n

20
‐Ju
n

27
‐Ju
n

11
‐Ju
l

18
‐Ju
l

26
‐Ju
l

1‐
Au
g

5‐
Au
g

8‐
Au
g

Pe
rc
en

ta
ge
 o
f S
am

pl
es
 in
 e
ac
h

N
U
M
A
 S
co
re
 R
an
ge

Locality Score:
0.86‐1

Locality Score:
0.67‐0.85

Locality Score:
0.33‐0.66

Figure 2. Percentage of Gmail backend server

jobs within various locality score ranges.

Therefore, each job may be co-located with other applica-
tions on a multicore server. To minimize the influence of
these factors, we collect a large amount of samples of hun-
dreds of Gmail server jobs at a fine granularity every day for
a few months from identically-configured AMD Barcelona
platforms in one production cluster. This AMD Barcelona
platform is shown in Figure 1, on which, four nodes are
asymmetrically connected using bi-directional HyperTrans-
port.

[NUMA Score Distribution] We first investigate the
percentage of Gmail backend server jobs that are
having remote memory accesses. Figure 2 presents the dis-
tribution of jobs in different CPU-memory locality score
(NUMA score) ranges. The locality score of each job on
each machine is sampled periodically (every 5 mins) on
AMD Barcelona in one production cluster. This figure sum-
marizes the sampling results for every Monday in a three-
month span (23/05 to 08/08). Each day, around 65k samples
are collected. On our AMD Barcelona platforms (Figure 1),
the NUMA score ranges from 0.33 (all memory accesses
are 2-hops away) to 1 (all accesses are in the local mem-
ory node). Figure 2 shows that NUMA score distribution
fluctuates. On May 23rd, all jobs are having 100% remote
accesses. The situation improves until June 13rd, when all
samples have locality score higher than 0.66, and then it de-
teriorates again. This fluctuation may be due to job restarts,
machine restarts, kernel updates, other high priority jobs get
scheduled to the machines, etc. But in general, on average,
for a significant amount (often more than 50%) of jobs, all
memory accesses are at least 1 hop away.

[Correlating NUMA Score and CPI] To investigate
if better memory locality necessarily indicates better per-
formance and to quantify the amount of the performance
swing due to local/remote memory accesses, we sam-
ples the Gmail backend server job’s cycles per
instructions (CPI) and correlate a job’s CPI with its local-

ity score. We use CPI for as our performance metric be-
cause 1) we observe that in our production clusters, most
latency-sensitive applications’ average CPI measurements
are fairly consistent across tasks and are well correlated
with the application-level behavior and performance; 2) it
can be sampled with very little overhead in production. Fig-
ures 3 and 4 present the results of the correlation analysis of
all samples collected on two randomly selected Mondays.
The x-axis is the NUMA score bin, and the y-axis shows the
average normalized CPI of all samples that belong to that
NUMA score range. The error bars show the standard de-
viations. These two figures show that the impact of NUMA
on performance (CPI) of Gmail backend server is
quite significant. In Figure 3, the CPI is dropping from
around 1.15x (at score 0.5) to around 1x (at score 1). It
is a 15% difference. Although the standard deviation is
not small due to the influence of other performance fac-
tors, the trend is clear. In Figure 4, the average normal-
ized CPI drops from 1.13x (at score 0.5) to 1x (score 1),
a 14% reduction. This shows that for Gmail backend,
in general, the more local accesses (higher locality score),
the better the CPI performance (lower CPI). In addition to
Gmail on AMD Barcelona, we also conducted similar study
for Web-search frontend on Intel Westmere servers.
The results are presented in Figure 5. Our Intel Westmere
platform is a dual-socket Xeon X5660 NUMA machine,
shown in Figure 9. Each chip has its own integrated mem-
ory controller and buses connecting to memory. Processors
are connected through Intel QuickPath interconnect (QPI).
Similar to Gmail, we observe a significant performance im-
provement when CPU-memory locality improves: on aver-
age the CPI drops from 1.20x to 1x when the locality score
improves from 0.5 to 1.

[Correlating NUMA Score and Application Perfor-
mance] In addition to CPI, we also correlate each Gmail
backend server job’s NUMA score with its user-

Monday, March 4, 13

NUMA Score: Example

100% accesses between Node 0 and 3: 0.33

100% between Node 0 and 2: 0.66

100% local : 1

11

 DIMM

MEM

Node 2

 L3

8 9 10 11

 L3

12 13 14 15

MEM
 L3

0 1 2 3

Node 0

Node 3

 L3

4 5 6 7

Node 1

MEM

MEM

Figure 1. AMD Barcelona

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

23
‐M
ay

30
‐M
ay

6‐
Ju
n

13
‐Ju
n

20
‐Ju
n

27
‐Ju
n

11
‐Ju
l

18
‐Ju
l

26
‐Ju
l

1‐
Au
g

5‐
Au
g

8‐
Au
g

Pe
rc
en

ta
ge
 o
f S
am

pl
es
 in
 e
ac
h

N
U
M
A
 S
co
re
 R
an
ge

Locality Score:
0.86‐1

Locality Score:
0.67‐0.85

Locality Score:
0.33‐0.66

Figure 2. Percentage of Gmail backend server

jobs within various locality score ranges.

Therefore, each job may be co-located with other applica-
tions on a multicore server. To minimize the influence of
these factors, we collect a large amount of samples of hun-
dreds of Gmail server jobs at a fine granularity every day for
a few months from identically-configured AMD Barcelona
platforms in one production cluster. This AMD Barcelona
platform is shown in Figure 1, on which, four nodes are
asymmetrically connected using bi-directional HyperTrans-
port.

[NUMA Score Distribution] We first investigate the
percentage of Gmail backend server jobs that are
having remote memory accesses. Figure 2 presents the dis-
tribution of jobs in different CPU-memory locality score
(NUMA score) ranges. The locality score of each job on
each machine is sampled periodically (every 5 mins) on
AMD Barcelona in one production cluster. This figure sum-
marizes the sampling results for every Monday in a three-
month span (23/05 to 08/08). Each day, around 65k samples
are collected. On our AMD Barcelona platforms (Figure 1),
the NUMA score ranges from 0.33 (all memory accesses
are 2-hops away) to 1 (all accesses are in the local mem-
ory node). Figure 2 shows that NUMA score distribution
fluctuates. On May 23rd, all jobs are having 100% remote
accesses. The situation improves until June 13rd, when all
samples have locality score higher than 0.66, and then it de-
teriorates again. This fluctuation may be due to job restarts,
machine restarts, kernel updates, other high priority jobs get
scheduled to the machines, etc. But in general, on average,
for a significant amount (often more than 50%) of jobs, all
memory accesses are at least 1 hop away.

[Correlating NUMA Score and CPI] To investigate
if better memory locality necessarily indicates better per-
formance and to quantify the amount of the performance
swing due to local/remote memory accesses, we sam-
ples the Gmail backend server job’s cycles per
instructions (CPI) and correlate a job’s CPI with its local-

ity score. We use CPI for as our performance metric be-
cause 1) we observe that in our production clusters, most
latency-sensitive applications’ average CPI measurements
are fairly consistent across tasks and are well correlated
with the application-level behavior and performance; 2) it
can be sampled with very little overhead in production. Fig-
ures 3 and 4 present the results of the correlation analysis of
all samples collected on two randomly selected Mondays.
The x-axis is the NUMA score bin, and the y-axis shows the
average normalized CPI of all samples that belong to that
NUMA score range. The error bars show the standard de-
viations. These two figures show that the impact of NUMA
on performance (CPI) of Gmail backend server is
quite significant. In Figure 3, the CPI is dropping from
around 1.15x (at score 0.5) to around 1x (at score 1). It
is a 15% difference. Although the standard deviation is
not small due to the influence of other performance fac-
tors, the trend is clear. In Figure 4, the average normal-
ized CPI drops from 1.13x (at score 0.5) to 1x (score 1),
a 14% reduction. This shows that for Gmail backend,
in general, the more local accesses (higher locality score),
the better the CPI performance (lower CPI). In addition to
Gmail on AMD Barcelona, we also conducted similar study
for Web-search frontend on Intel Westmere servers.
The results are presented in Figure 5. Our Intel Westmere
platform is a dual-socket Xeon X5660 NUMA machine,
shown in Figure 9. Each chip has its own integrated mem-
ory controller and buses connecting to memory. Processors
are connected through Intel QuickPath interconnect (QPI).
Similar to Gmail, we observe a significant performance im-
provement when CPU-memory locality improves: on aver-
age the CPI drops from 1.20x to 1x when the locality score
improves from 0.5 to 1.

[Correlating NUMA Score and Application Perfor-
mance] In addition to CPI, we also correlate each Gmail
backend server job’s NUMA score with its user-

Monday, March 4, 13

Profiling in Production

Large-scale profiling/monitoring infrastructure in
production

Example: Google Wide Profiling

NUMA Score

Performance metrics

CPI

Application-specific metrics

12

Monday, March 4, 13

Gmail Backend

Sticky service

Running in co-located clusters

Global datacenters

Load balancer migrates user accounts

Load fluctuates

13

Monday, March 4, 13

NUMA Score Distribution

14

 DIMM

MEM

Node 2

 L3

8 9 10 11

 L3

12 13 14 15

MEM
 L3

0 1 2 3

Node 0

Node 3

 L3

4 5 6 7

Node 1

MEM

MEM

Figure 1. AMD Barcelona

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

23
‐M
ay

30
‐M
ay

6‐
Ju
n

13
‐Ju
n

20
‐Ju
n

27
‐Ju
n

11
‐Ju
l

18
‐Ju
l

26
‐Ju
l

1‐
Au
g

5‐
Au
g

8‐
Au
g

Pe
rc
en

ta
ge
 o
f S
am

pl
es
 in
 e
ac
h

N
U
M
A
 S
co
re
 R
an
ge

Locality Score:
0.86‐1

Locality Score:
0.67‐0.85

Locality Score:
0.33‐0.66

Figure 2. Percentage of Gmail backend server

jobs within various locality score ranges.

Therefore, each job may be co-located with other applica-
tions on a multicore server. To minimize the influence of
these factors, we collect a large amount of samples of hun-
dreds of Gmail server jobs at a fine granularity every day for
a few months from identically-configured AMD Barcelona
platforms in one production cluster. This AMD Barcelona
platform is shown in Figure 1, on which, four nodes are
asymmetrically connected using bi-directional HyperTrans-
port.

[NUMA Score Distribution] We first investigate the
percentage of Gmail backend server jobs that are
having remote memory accesses. Figure 2 presents the dis-
tribution of jobs in different CPU-memory locality score
(NUMA score) ranges. The locality score of each job on
each machine is sampled periodically (every 5 mins) on
AMD Barcelona in one production cluster. This figure sum-
marizes the sampling results for every Monday in a three-
month span (23/05 to 08/08). Each day, around 65k samples
are collected. On our AMD Barcelona platforms (Figure 1),
the NUMA score ranges from 0.33 (all memory accesses
are 2-hops away) to 1 (all accesses are in the local mem-
ory node). Figure 2 shows that NUMA score distribution
fluctuates. On May 23rd, all jobs are having 100% remote
accesses. The situation improves until June 13rd, when all
samples have locality score higher than 0.66, and then it de-
teriorates again. This fluctuation may be due to job restarts,
machine restarts, kernel updates, other high priority jobs get
scheduled to the machines, etc. But in general, on average,
for a significant amount (often more than 50%) of jobs, all
memory accesses are at least 1 hop away.

[Correlating NUMA Score and CPI] To investigate
if better memory locality necessarily indicates better per-
formance and to quantify the amount of the performance
swing due to local/remote memory accesses, we sam-
ples the Gmail backend server job’s cycles per
instructions (CPI) and correlate a job’s CPI with its local-

ity score. We use CPI for as our performance metric be-
cause 1) we observe that in our production clusters, most
latency-sensitive applications’ average CPI measurements
are fairly consistent across tasks and are well correlated
with the application-level behavior and performance; 2) it
can be sampled with very little overhead in production. Fig-
ures 3 and 4 present the results of the correlation analysis of
all samples collected on two randomly selected Mondays.
The x-axis is the NUMA score bin, and the y-axis shows the
average normalized CPI of all samples that belong to that
NUMA score range. The error bars show the standard de-
viations. These two figures show that the impact of NUMA
on performance (CPI) of Gmail backend server is
quite significant. In Figure 3, the CPI is dropping from
around 1.15x (at score 0.5) to around 1x (at score 1). It
is a 15% difference. Although the standard deviation is
not small due to the influence of other performance fac-
tors, the trend is clear. In Figure 4, the average normal-
ized CPI drops from 1.13x (at score 0.5) to 1x (score 1),
a 14% reduction. This shows that for Gmail backend,
in general, the more local accesses (higher locality score),
the better the CPI performance (lower CPI). In addition to
Gmail on AMD Barcelona, we also conducted similar study
for Web-search frontend on Intel Westmere servers.
The results are presented in Figure 5. Our Intel Westmere
platform is a dual-socket Xeon X5660 NUMA machine,
shown in Figure 9. Each chip has its own integrated mem-
ory controller and buses connecting to memory. Processors
are connected through Intel QuickPath interconnect (QPI).
Similar to Gmail, we observe a significant performance im-
provement when CPU-memory locality improves: on aver-
age the CPI drops from 1.20x to 1x when the locality score
improves from 0.5 to 1.

[Correlating NUMA Score and Application Perfor-
mance] In addition to CPI, we also correlate each Gmail
backend server job’s NUMA score with its user-

Monday, March 4, 13

NUMA Score Distribution

14

 DIMM

MEM

Node 2

 L3

8 9 10 11

 L3

12 13 14 15

MEM
 L3

0 1 2 3

Node 0

Node 3

 L3

4 5 6 7

Node 1

MEM

MEM

Figure 1. AMD Barcelona

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

23
‐M
ay

30
‐M
ay

6‐
Ju
n

13
‐Ju
n

20
‐Ju
n

27
‐Ju
n

11
‐Ju
l

18
‐Ju
l

26
‐Ju
l

1‐
Au
g

5‐
Au
g

8‐
Au
g

Pe
rc
en

ta
ge
 o
f S
am

pl
es
 in
 e
ac
h

N
U
M
A
 S
co
re
 R
an
ge

Locality Score:
0.86‐1

Locality Score:
0.67‐0.85

Locality Score:
0.33‐0.66

Figure 2. Percentage of Gmail backend server

jobs within various locality score ranges.

Therefore, each job may be co-located with other applica-
tions on a multicore server. To minimize the influence of
these factors, we collect a large amount of samples of hun-
dreds of Gmail server jobs at a fine granularity every day for
a few months from identically-configured AMD Barcelona
platforms in one production cluster. This AMD Barcelona
platform is shown in Figure 1, on which, four nodes are
asymmetrically connected using bi-directional HyperTrans-
port.

[NUMA Score Distribution] We first investigate the
percentage of Gmail backend server jobs that are
having remote memory accesses. Figure 2 presents the dis-
tribution of jobs in different CPU-memory locality score
(NUMA score) ranges. The locality score of each job on
each machine is sampled periodically (every 5 mins) on
AMD Barcelona in one production cluster. This figure sum-
marizes the sampling results for every Monday in a three-
month span (23/05 to 08/08). Each day, around 65k samples
are collected. On our AMD Barcelona platforms (Figure 1),
the NUMA score ranges from 0.33 (all memory accesses
are 2-hops away) to 1 (all accesses are in the local mem-
ory node). Figure 2 shows that NUMA score distribution
fluctuates. On May 23rd, all jobs are having 100% remote
accesses. The situation improves until June 13rd, when all
samples have locality score higher than 0.66, and then it de-
teriorates again. This fluctuation may be due to job restarts,
machine restarts, kernel updates, other high priority jobs get
scheduled to the machines, etc. But in general, on average,
for a significant amount (often more than 50%) of jobs, all
memory accesses are at least 1 hop away.

[Correlating NUMA Score and CPI] To investigate
if better memory locality necessarily indicates better per-
formance and to quantify the amount of the performance
swing due to local/remote memory accesses, we sam-
ples the Gmail backend server job’s cycles per
instructions (CPI) and correlate a job’s CPI with its local-

ity score. We use CPI for as our performance metric be-
cause 1) we observe that in our production clusters, most
latency-sensitive applications’ average CPI measurements
are fairly consistent across tasks and are well correlated
with the application-level behavior and performance; 2) it
can be sampled with very little overhead in production. Fig-
ures 3 and 4 present the results of the correlation analysis of
all samples collected on two randomly selected Mondays.
The x-axis is the NUMA score bin, and the y-axis shows the
average normalized CPI of all samples that belong to that
NUMA score range. The error bars show the standard de-
viations. These two figures show that the impact of NUMA
on performance (CPI) of Gmail backend server is
quite significant. In Figure 3, the CPI is dropping from
around 1.15x (at score 0.5) to around 1x (at score 1). It
is a 15% difference. Although the standard deviation is
not small due to the influence of other performance fac-
tors, the trend is clear. In Figure 4, the average normal-
ized CPI drops from 1.13x (at score 0.5) to 1x (score 1),
a 14% reduction. This shows that for Gmail backend,
in general, the more local accesses (higher locality score),
the better the CPI performance (lower CPI). In addition to
Gmail on AMD Barcelona, we also conducted similar study
for Web-search frontend on Intel Westmere servers.
The results are presented in Figure 5. Our Intel Westmere
platform is a dual-socket Xeon X5660 NUMA machine,
shown in Figure 9. Each chip has its own integrated mem-
ory controller and buses connecting to memory. Processors
are connected through Intel QuickPath interconnect (QPI).
Similar to Gmail, we observe a significant performance im-
provement when CPU-memory locality improves: on aver-
age the CPI drops from 1.20x to 1x when the locality score
improves from 0.5 to 1.

[Correlating NUMA Score and Application Perfor-
mance] In addition to CPI, we also correlate each Gmail
backend server job’s NUMA score with its user-

 for a significant amount (often more than 50%) of
jobs, all memory accesses are at least 1 hop away.

Monday, March 4, 13

Gmail Backend

15

CPI vs. NUMA score 05/30.

.8X

.9X

1.X

1.1X

1.2X

1.3X

1.4X

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

A
ve
ra
ge
 N
or
m
al
iz
ed

 C
PI

CPU‐memory Locality Score

Figure 3. Gmail backend
server on 05/30. Bet-
ter NUMA score correlates
with lower CPI.

.8X

.9X

1.X

1.1X

1.2X

1.3X

1.4X

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
A
ve
ra
ge
 N
or
m
al
iz
ed

 C
PI

CPU‐Memory Locality Score

Figure 4. Gmail backend
server on 06/20 - NUMA
score and CPI.

.9X

1.X

1.1X

1.2X

1.3X

1.4X

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

A
ve
ra
ge
 n
or
m
al
iz
ed

 C
PI

CPU‐memory Locality Score

Figure 5. Web-search Fron-
tend - NUMA score and
CPI.

.5X

.7X

.9X

1.1X

1.3X

1.5X

1.7X

1.9X

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

N
or
m
al
iz
ed

 C
PU

 u
0
liz
a0

on

CPU‐memory Locality Score

Figure 6. Gmail backend
server. Better NUMA score
correlates with better CPU
utilization

.4X

.6X

.8X

1.X

1.2X

1.4X

1.6X

1.8X

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

A
ve
ra
ge
 C
PU

 +
m
e/
Re

qu
es
t

CPU‐memory Locality Score

Figure 7. Gmail backend
server’s CPU time/request
and NUMA score

.2X

.7X

1.2X

1.7X

2.2X

2.7X

3.2X

3.7X

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

A
ve
ra
ge
 R
eq

ue
st
 L
at
en

cy
 (T

L)

CPU‐memory Locality Score

Figure 8. Gmail backend
server’s request latency
(loading threadlist request)
and NUMA score

1. 100% Local access, sharing 1 LLC

12 MB L3

2 3 4 50 1

12 MB L3

8 9 10 116 7 DIMM

X X X XX X

XX X XX X

X X X XX X

X Y Y YX X X Y Y YX X

X X X XX X Y Y Y YY Y

X X X XX XY Y Y YY Y

MEM

M-X

M-X

M-X

M-X M-Y

Node 0 Node 1

MEM

M-X

M-X

M-Y

M-Y

2. 50% Local access, sharing 2 LLCs

3. 0% Local access, sharing 1 LLC

X solo:

X coruns w/ Y:
4. 100 % Local access, sharing LLC w/ sibling

5. 50 % Local access, sharing LLC w/ Y

6. 0 % Local access, sharing LLC w/ sibling

Figure 9. Intel Westmere and the 6 running scenarios in our load-test experiments

.8X

.9X

1.X

1.1X

1.2X

1.3X

1.4X

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

A
ve
ra
ge
 N
or
m
al
iz
ed

 C
PI

CPU‐memory Locality Score

Figure 3. Gmail backend
server on 05/30. Bet-
ter NUMA score correlates
with lower CPI.

.8X

.9X

1.X

1.1X

1.2X

1.3X

1.4X

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

A
ve
ra
ge
 N
or
m
al
iz
ed

 C
PI

CPU‐Memory Locality Score

Figure 4. Gmail backend
server on 06/20 - NUMA
score and CPI.

.9X

1.X

1.1X

1.2X

1.3X

1.4X

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

A
ve
ra
ge
 n
or
m
al
iz
ed

 C
PI

CPU‐memory Locality Score

Figure 5. Web-search Fron-
tend - NUMA score and
CPI.

.5X

.7X

.9X

1.1X

1.3X

1.5X

1.7X

1.9X

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

N
or
m
al
iz
ed

 C
PU

 u
0
liz
a0

on

CPU‐memory Locality Score

Figure 6. Gmail backend
server. Better NUMA score
correlates with better CPU
utilization

.4X

.6X

.8X

1.X

1.2X

1.4X

1.6X

1.8X

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

A
ve
ra
ge
 C
PU

 +
m
e/
Re

qu
es
t

CPU‐memory Locality Score

Figure 7. Gmail backend
server’s CPU time/request
and NUMA score

.2X

.7X

1.2X

1.7X

2.2X

2.7X

3.2X

3.7X

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

A
ve
ra
ge
 R
eq

ue
st
 L
at
en

cy
 (T

L)

CPU‐memory Locality Score

Figure 8. Gmail backend
server’s request latency
(loading threadlist request)
and NUMA score

1. 100% Local access, sharing 1 LLC

12 MB L3

2 3 4 50 1

12 MB L3

8 9 10 116 7 DIMM

X X X XX X

XX X XX X

X X X XX X

X Y Y YX X X Y Y YX X

X X X XX X Y Y Y YY Y

X X X XX XY Y Y YY Y

MEM

M-X

M-X

M-X

M-X M-Y

Node 0 Node 1

MEM

M-X

M-X

M-Y

M-Y

2. 50% Local access, sharing 2 LLCs

3. 0% Local access, sharing 1 LLC

X solo:

X coruns w/ Y:
4. 100 % Local access, sharing LLC w/ sibling

5. 50 % Local access, sharing LLC w/ Y

6. 0 % Local access, sharing LLC w/ sibling

Figure 9. Intel Westmere and the 6 running scenarios in our load-test experiments

CPI vs. NUMA score on 06/20.

Better NUMA score correlates with lower CPI.

10-20% performance swing

Monday, March 4, 13

Better NUMA score correlates with lower CPU utilization.

Noisy data for request latency and CPU/request

16

.8X

.9X

1.X

1.1X

1.2X

1.3X

1.4X

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

A
ve
ra
ge
 N
or
m
al
iz
ed

 C
PI

CPU‐memory Locality Score

Figure 3. Gmail backend
server on 05/30. Bet-
ter NUMA score correlates
with lower CPI.

.8X

.9X

1.X

1.1X

1.2X

1.3X

1.4X

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

A
ve
ra
ge
 N
or
m
al
iz
ed

 C
PI

CPU‐Memory Locality Score

Figure 4. Gmail backend
server on 06/20 - NUMA
score and CPI.

.9X

1.X

1.1X

1.2X

1.3X

1.4X

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

A
ve
ra
ge
 n
or
m
al
iz
ed

 C
PI

CPU‐memory Locality Score

Figure 5. Web-search Fron-
tend - NUMA score and
CPI.

.5X

.7X

.9X

1.1X

1.3X

1.5X

1.7X

1.9X

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

N
or
m
al
iz
ed

 C
PU

 u
0
liz
a0

on

CPU‐memory Locality Score

Figure 6. Gmail backend
server. Better NUMA score
correlates with better CPU
utilization

.4X

.6X

.8X

1.X

1.2X

1.4X

1.6X

1.8X

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

A
ve
ra
ge
 C
PU

 +
m
e/
Re

qu
es
t

CPU‐memory Locality Score

Figure 7. Gmail backend
server’s CPU time/request
and NUMA score

.2X

.7X

1.2X

1.7X

2.2X

2.7X

3.2X

3.7X

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

A
ve
ra
ge
 R
eq

ue
st
 L
at
en

cy
 (T

L)

CPU‐memory Locality Score

Figure 8. Gmail backend
server’s request latency
(loading threadlist request)
and NUMA score

1. 100% Local access, sharing 1 LLC

12 MB L3

2 3 4 50 1

12 MB L3

8 9 10 116 7 DIMM

X X X XX X

XX X XX X

X X X XX X

X Y Y YX X X Y Y YX X

X X X XX X Y Y Y YY Y

X X X XX XY Y Y YY Y

MEM

M-X

M-X

M-X

M-X M-Y

Node 0 Node 1

MEM

M-X

M-X

M-Y

M-Y

2. 50% Local access, sharing 2 LLCs

3. 0% Local access, sharing 1 LLC

X solo:

X coruns w/ Y:
4. 100 % Local access, sharing LLC w/ sibling

5. 50 % Local access, sharing LLC w/ Y

6. 0 % Local access, sharing LLC w/ sibling

Figure 9. Intel Westmere and the 6 running scenarios in our load-test experiments

Gmail Backend

CPU utilization vs. NUMA CPU time/request vs. NUMA Request Latency (threadlist) vs.
NUMA

Monday, March 4, 13

Websearch Frontend

17

.8X

.9X

1.X

1.1X

1.2X

1.3X

1.4X

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

A
ve
ra
ge
 N
or
m
al
iz
ed

 C
PI

CPU‐memory Locality Score

Figure 3. Gmail backend
server on 05/30. Bet-
ter NUMA score correlates
with lower CPI.

.8X

.9X

1.X

1.1X

1.2X

1.3X

1.4X

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

A
ve
ra
ge
 N
or
m
al
iz
ed

 C
PI

CPU‐Memory Locality Score

Figure 4. Gmail backend
server on 06/20 - NUMA
score and CPI.

.9X

1.X

1.1X

1.2X

1.3X

1.4X

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

A
ve
ra
ge
 n
or
m
al
iz
ed

 C
PI

CPU‐memory Locality Score

Figure 5. Web-search Fron-
tend - NUMA score and
CPI.

.5X

.7X

.9X

1.1X

1.3X

1.5X

1.7X

1.9X

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

N
or
m
al
iz
ed

 C
PU

 u
0
liz
a0

on

CPU‐memory Locality Score

Figure 6. Gmail backend
server. Better NUMA score
correlates with better CPU
utilization

.4X

.6X

.8X

1.X

1.2X

1.4X

1.6X

1.8X

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

A
ve
ra
ge
 C
PU

 +
m
e/
Re

qu
es
t

CPU‐memory Locality Score

Figure 7. Gmail backend
server’s CPU time/request
and NUMA score

.2X

.7X

1.2X

1.7X

2.2X

2.7X

3.2X

3.7X

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

A
ve
ra
ge
 R
eq

ue
st
 L
at
en

cy
 (T

L)

CPU‐memory Locality Score

Figure 8. Gmail backend
server’s request latency
(loading threadlist request)
and NUMA score

1. 100% Local access, sharing 1 LLC

12 MB L3

2 3 4 50 1

12 MB L3

8 9 10 116 7 DIMM

X X X XX X

XX X XX X

X X X XX X

X Y Y YX X X Y Y YX X

X X X XX X Y Y Y YY Y

X X X XX XY Y Y YY Y

MEM

M-X

M-X

M-X

M-X M-Y

Node 0 Node 1

MEM

M-X

M-X

M-Y

M-Y

2. 50% Local access, sharing 2 LLCs

3. 0% Local access, sharing 1 LLC

X solo:

X coruns w/ Y:
4. 100 % Local access, sharing LLC w/ sibling

5. 50 % Local access, sharing LLC w/ Y

6. 0 % Local access, sharing LLC w/ sibling

Figure 9. Intel Westmere and the 6 running scenarios in our load-test experiments

CPI vs. NUMA score

 ~20% performance swing
Better NUMA score correlates with lower CPI.

Monday, March 4, 13

Methodology

18

2-phase Methodology

Production study in the wild

Single-node load-test in the controlled environment

Monday, March 4, 13

Load Test on Single Server

Tradeoffs between memory access locality and the
impact of cache sharing/contention on a CMP
machine

19

Monday, March 4, 13

Load Test on Single Server

Tradeoffs between memory access locality and the
impact of cache sharing/contention on a CMP
machine

19

1. 100% Local access, sharing 1 LLC

12 MB L3

2 3 4 50 1

12 MB L3

8 9 10 116 7 DIMM

X X X XX X

XX X XX X

X X X XX X

MEM

M-X

M-X

M-X

Node 0 Node 1

MEM

2. 50% Local access, sharing 2 LLCs

3. 0% Local access, sharing 1 LLC

X solo:

Monday, March 4, 13

Load Test on Single Server

Tradeoffs between memory access locality and the
impact of cache sharing/contention on a CMP
machine

19

1. 100% Local access, sharing 1 LLC

12 MB L3

2 3 4 50 1

12 MB L3

8 9 10 116 7 DIMM

X X X XX X

XX X XX X

X X X XX X

MEM

M-X

M-X

M-X

Node 0 Node 1

MEM

2. 50% Local access, sharing 2 LLCs

3. 0% Local access, sharing 1 LLC

X solo:

X Y Y YX X X Y Y YX X

X X X XX X Y Y Y YY Y

X X X XX XY Y Y YY Y

M-X M-Y

M-X

M-X

M-Y

M-Y

X coruns w/ Y:
4. 100 % Local access, sharing LLC w/ sibling

5. 50 % Local access, sharing LLC w/ Y

6. 0 % Local access, sharing LLC w/ sibling

Monday, March 4, 13

workload description metric

cluster-docs Unsupervised Bayesian clustering tool to take keywords or text
documents and “explain” them with meaningful clusters.

throughput

bigtable storage software for massive amount of data average r/w latency

search-frontend-
render

Web search frontend server, collect results from many backends
and assembles html for user.

user time (secs)

Table 1. Datacenter Applications

 1.05x

solo +bigtable +render +docs

N
o
rm

al
iz

ed
 P

er
fo

rm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 10. Normalized performance of
cluster-docs running alone and running
with 3 various co-runners

 1.05x

solo +bigtable +render +docs

N
o
rm

al
iz

ed
 P

er
fo

rm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 11. Normalized performance of
Bigtable

 1.05x

solo +bigtable +render +docs

N
o
rm

al
iz

ed
 P

er
fo

rm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 12. Normalized performance of
Web-search frontend render

mote accesses. For example, cluster-docs has a 12%
performance degradation when all accesses are remote, as
shown by the first cluster of bars in Figure 10. However,
Bigtable (Figure 11) stands out to be a curious case,
whose performance for 100% remote accesses is better than
50% remote accesses. This may be due to the fact that
Bigtable benefits from sharing cache among its own sib-
ling threads. As reported in recent work [33] that Bigtable
has a large amount of data sharing (confirmed by its perfor-
mance counter profiles) and thus its performance benefits
from sharing the last level cache among its threads. Thus
when it cannot have 100% local accesses, interestingly, it
may prefer to cluster its threads to a remote node (1 shared
cache) than spreading them across sockets (2 shared caches)
for partial local accesses.

Another interesting case is cluster-docs (Fig-
ure 10), whose performance degradation for 50% local ac-
cesses comparing to 100% local accesses is quite insignif-
icant (1-2%). However, the 0% local accesses case has
a significant performance impact. This is because that
cluster-docs’ threads contend for cache space [33].
Therefore, although spreading its threads (scenario 2) in-
creases remote accesses, it also increases cache space, alle-
viating the performance degradation.

[Corun] The 2nd-4th clusters of bars in each figure
demonstrate each application’s performance in scenario 4-6

workload description metric

cluster-docs Unsupervised Bayesian clustering tool to take keywords or text
documents and “explain” them with meaningful clusters.

throughput

bigtable storage software for massive amount of data average r/w latency

search-frontend-
render

Web search frontend server, collect results from many backends
and assembles html for user.

user time (secs)

Table 1. Datacenter Applications

 1.05x

solo +bigtable +render +docs

N
o
rm

al
iz

ed
 P

er
fo

rm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 10. Normalized performance of
cluster-docs running alone and running
with 3 various co-runners

 1.05x

solo +bigtable +render +docs

N
o
rm

al
iz

ed
 P

er
fo

rm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 11. Normalized performance of
Bigtable

 1.05x

solo +bigtable +render +docs

N
o
rm

al
iz

ed
 P

er
fo

rm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 12. Normalized performance of
Web-search frontend render

mote accesses. For example, cluster-docs has a 12%
performance degradation when all accesses are remote, as
shown by the first cluster of bars in Figure 10. However,
Bigtable (Figure 11) stands out to be a curious case,
whose performance for 100% remote accesses is better than
50% remote accesses. This may be due to the fact that
Bigtable benefits from sharing cache among its own sib-
ling threads. As reported in recent work [33] that Bigtable
has a large amount of data sharing (confirmed by its perfor-
mance counter profiles) and thus its performance benefits
from sharing the last level cache among its threads. Thus
when it cannot have 100% local accesses, interestingly, it
may prefer to cluster its threads to a remote node (1 shared
cache) than spreading them across sockets (2 shared caches)
for partial local accesses.

Another interesting case is cluster-docs (Fig-
ure 10), whose performance degradation for 50% local ac-
cesses comparing to 100% local accesses is quite insignif-
icant (1-2%). However, the 0% local accesses case has
a significant performance impact. This is because that
cluster-docs’ threads contend for cache space [33].
Therefore, although spreading its threads (scenario 2) in-
creases remote accesses, it also increases cache space, alle-
viating the performance degradation.

[Corun] The 2nd-4th clusters of bars in each figure
demonstrate each application’s performance in scenario 4-6

workload description metric

cluster-docs Unsupervised Bayesian clustering tool to take keywords or text
documents and “explain” them with meaningful clusters.

throughput

bigtable storage software for massive amount of data average r/w latency

search-frontend-
render

Web search frontend server, collect results from many backends
and assembles html for user.

user time (secs)

Table 1. Datacenter Applications

 1.05x

solo +bigtable +render +docs

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 10. Normalized performance of
cluster-docs running alone and running
with 3 various co-runners

 1.05x

solo +bigtable +render +docs

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 11. Normalized performance of
Bigtable

 1.05x

solo +bigtable +render +docs

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 12. Normalized performance of
Web-search frontend render

mote accesses. For example, cluster-docs has a 12%
performance degradation when all accesses are remote, as
shown by the first cluster of bars in Figure 10. However,
Bigtable (Figure 11) stands out to be a curious case,
whose performance for 100% remote accesses is better than
50% remote accesses. This may be due to the fact that
Bigtable benefits from sharing cache among its own sib-
ling threads. As reported in recent work [33] that Bigtable
has a large amount of data sharing (confirmed by its perfor-
mance counter profiles) and thus its performance benefits
from sharing the last level cache among its threads. Thus
when it cannot have 100% local accesses, interestingly, it
may prefer to cluster its threads to a remote node (1 shared
cache) than spreading them across sockets (2 shared caches)
for partial local accesses.

Another interesting case is cluster-docs (Fig-
ure 10), whose performance degradation for 50% local ac-
cesses comparing to 100% local accesses is quite insignif-
icant (1-2%). However, the 0% local accesses case has
a significant performance impact. This is because that
cluster-docs’ threads contend for cache space [33].
Therefore, although spreading its threads (scenario 2) in-
creases remote accesses, it also increases cache space, alle-
viating the performance degradation.

[Corun] The 2nd-4th clusters of bars in each figure
demonstrate each application’s performance in scenario 4-6

workload description metric

cluster-docs Unsupervised Bayesian clustering tool to take keywords or text
documents and “explain” them with meaningful clusters.

throughput

bigtable storage software for massive amount of data average r/w latency

search-frontend-
render

Web search frontend server, collect results from many backends
and assembles html for user.

user time (secs)

Table 1. Datacenter Applications

 1.05x

solo +bigtable +render +docs

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 10. Normalized performance of
cluster-docs running alone and running
with 3 various co-runners

 1.05x

solo +bigtable +render +docs

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 11. Normalized performance of
Bigtable

 1.05x

solo +bigtable +render +docs

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 12. Normalized performance of
Web-search frontend render

mote accesses. For example, cluster-docs has a 12%
performance degradation when all accesses are remote, as
shown by the first cluster of bars in Figure 10. However,
Bigtable (Figure 11) stands out to be a curious case,
whose performance for 100% remote accesses is better than
50% remote accesses. This may be due to the fact that
Bigtable benefits from sharing cache among its own sib-
ling threads. As reported in recent work [33] that Bigtable
has a large amount of data sharing (confirmed by its perfor-
mance counter profiles) and thus its performance benefits
from sharing the last level cache among its threads. Thus
when it cannot have 100% local accesses, interestingly, it
may prefer to cluster its threads to a remote node (1 shared
cache) than spreading them across sockets (2 shared caches)
for partial local accesses.

Another interesting case is cluster-docs (Fig-
ure 10), whose performance degradation for 50% local ac-
cesses comparing to 100% local accesses is quite insignif-
icant (1-2%). However, the 0% local accesses case has
a significant performance impact. This is because that
cluster-docs’ threads contend for cache space [33].
Therefore, although spreading its threads (scenario 2) in-
creases remote accesses, it also increases cache space, alle-
viating the performance degradation.

[Corun] The 2nd-4th clusters of bars in each figure
demonstrate each application’s performance in scenario 4-6

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Cluster
-docs

Bigtable

Websearch
Frontend

1oo %

workload description metric

cluster-docs Unsupervised Bayesian clustering tool to take keywords or text
documents and “explain” them with meaningful clusters.

throughput

bigtable storage software for massive amount of data average r/w latency

search-frontend-
render

Web search frontend server, collect results from many backends
and assembles html for user.

user time (secs)

Table 1. Datacenter Applications

 1.05x

solo +bigtable +render +docs

No
rm

ali
ze

d P
erf

orm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 10. Normalized performance of
cluster-docs running alone and running
with 3 various co-runners

 1.05x

solo +bigtable +render +docs

No
rm

ali
ze

d P
erf

orm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 11. Normalized performance of
Bigtable

 1.05x

solo +bigtable +render +docs

No
rm

ali
ze

d P
erf

orm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 12. Normalized performance of
Web-search frontend render

mote accesses. For example, cluster-docs has a 12%
performance degradation when all accesses are remote, as
shown by the first cluster of bars in Figure 10. However,
Bigtable (Figure 11) stands out to be a curious case,
whose performance for 100% remote accesses is better than
50% remote accesses. This may be due to the fact that
Bigtable benefits from sharing cache among its own sib-
ling threads. As reported in recent work [33] that Bigtable
has a large amount of data sharing (confirmed by its perfor-
mance counter profiles) and thus its performance benefits
from sharing the last level cache among its threads. Thus
when it cannot have 100% local accesses, interestingly, it
may prefer to cluster its threads to a remote node (1 shared
cache) than spreading them across sockets (2 shared caches)
for partial local accesses.

Another interesting case is cluster-docs (Fig-
ure 10), whose performance degradation for 50% local ac-
cesses comparing to 100% local accesses is quite insignif-
icant (1-2%). However, the 0% local accesses case has
a significant performance impact. This is because that
cluster-docs’ threads contend for cache space [33].
Therefore, although spreading its threads (scenario 2) in-
creases remote accesses, it also increases cache space, alle-
viating the performance degradation.

[Corun] The 2nd-4th clusters of bars in each figure
demonstrate each application’s performance in scenario 4-6

50 %

workload description metric

cluster-docs Unsupervised Bayesian clustering tool to take keywords or text
documents and “explain” them with meaningful clusters.

throughput

bigtable storage software for massive amount of data average r/w latency

search-frontend-
render

Web search frontend server, collect results from many backends
and assembles html for user.

user time (secs)

Table 1. Datacenter Applications

 1.05x

solo +bigtable +render +docs

No
rm

ali
ze

d P
erf

orm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 10. Normalized performance of
cluster-docs running alone and running
with 3 various co-runners

 1.05x

solo +bigtable +render +docs

No
rm

ali
ze

d P
erf

orm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 11. Normalized performance of
Bigtable

 1.05x

solo +bigtable +render +docs

No
rm

ali
ze

d P
erf

orm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 12. Normalized performance of
Web-search frontend render

mote accesses. For example, cluster-docs has a 12%
performance degradation when all accesses are remote, as
shown by the first cluster of bars in Figure 10. However,
Bigtable (Figure 11) stands out to be a curious case,
whose performance for 100% remote accesses is better than
50% remote accesses. This may be due to the fact that
Bigtable benefits from sharing cache among its own sib-
ling threads. As reported in recent work [33] that Bigtable
has a large amount of data sharing (confirmed by its perfor-
mance counter profiles) and thus its performance benefits
from sharing the last level cache among its threads. Thus
when it cannot have 100% local accesses, interestingly, it
may prefer to cluster its threads to a remote node (1 shared
cache) than spreading them across sockets (2 shared caches)
for partial local accesses.

Another interesting case is cluster-docs (Fig-
ure 10), whose performance degradation for 50% local ac-
cesses comparing to 100% local accesses is quite insignif-
icant (1-2%). However, the 0% local accesses case has
a significant performance impact. This is because that
cluster-docs’ threads contend for cache space [33].
Therefore, although spreading its threads (scenario 2) in-
creases remote accesses, it also increases cache space, alle-
viating the performance degradation.

[Corun] The 2nd-4th clusters of bars in each figure
demonstrate each application’s performance in scenario 4-6

0%

X X X XX X

XX X XX X

X X X XX X

M-X

M-X

M-X

local access:

Monday, March 4, 13

workload description metric

cluster-docs Unsupervised Bayesian clustering tool to take keywords or text
documents and “explain” them with meaningful clusters.

throughput

bigtable storage software for massive amount of data average r/w latency

search-frontend-
render

Web search frontend server, collect results from many backends
and assembles html for user.

user time (secs)

Table 1. Datacenter Applications

 1.05x

solo +bigtable +render +docs

N
o
rm

al
iz

ed
 P

er
fo

rm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 10. Normalized performance of
cluster-docs running alone and running
with 3 various co-runners

 1.05x

solo +bigtable +render +docs

N
o
rm

al
iz

ed
 P

er
fo

rm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 11. Normalized performance of
Bigtable

 1.05x

solo +bigtable +render +docs

N
o
rm

al
iz

ed
 P

er
fo

rm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 12. Normalized performance of
Web-search frontend render

mote accesses. For example, cluster-docs has a 12%
performance degradation when all accesses are remote, as
shown by the first cluster of bars in Figure 10. However,
Bigtable (Figure 11) stands out to be a curious case,
whose performance for 100% remote accesses is better than
50% remote accesses. This may be due to the fact that
Bigtable benefits from sharing cache among its own sib-
ling threads. As reported in recent work [33] that Bigtable
has a large amount of data sharing (confirmed by its perfor-
mance counter profiles) and thus its performance benefits
from sharing the last level cache among its threads. Thus
when it cannot have 100% local accesses, interestingly, it
may prefer to cluster its threads to a remote node (1 shared
cache) than spreading them across sockets (2 shared caches)
for partial local accesses.

Another interesting case is cluster-docs (Fig-
ure 10), whose performance degradation for 50% local ac-
cesses comparing to 100% local accesses is quite insignif-
icant (1-2%). However, the 0% local accesses case has
a significant performance impact. This is because that
cluster-docs’ threads contend for cache space [33].
Therefore, although spreading its threads (scenario 2) in-
creases remote accesses, it also increases cache space, alle-
viating the performance degradation.

[Corun] The 2nd-4th clusters of bars in each figure
demonstrate each application’s performance in scenario 4-6

workload description metric

cluster-docs Unsupervised Bayesian clustering tool to take keywords or text
documents and “explain” them with meaningful clusters.

throughput

bigtable storage software for massive amount of data average r/w latency

search-frontend-
render

Web search frontend server, collect results from many backends
and assembles html for user.

user time (secs)

Table 1. Datacenter Applications

 1.05x

solo +bigtable +render +docs

N
o
rm

al
iz

ed
 P

er
fo

rm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 10. Normalized performance of
cluster-docs running alone and running
with 3 various co-runners

 1.05x

solo +bigtable +render +docs

N
o
rm

al
iz

ed
 P

er
fo

rm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 11. Normalized performance of
Bigtable

 1.05x

solo +bigtable +render +docs

N
o
rm

al
iz

ed
 P

er
fo

rm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 12. Normalized performance of
Web-search frontend render

mote accesses. For example, cluster-docs has a 12%
performance degradation when all accesses are remote, as
shown by the first cluster of bars in Figure 10. However,
Bigtable (Figure 11) stands out to be a curious case,
whose performance for 100% remote accesses is better than
50% remote accesses. This may be due to the fact that
Bigtable benefits from sharing cache among its own sib-
ling threads. As reported in recent work [33] that Bigtable
has a large amount of data sharing (confirmed by its perfor-
mance counter profiles) and thus its performance benefits
from sharing the last level cache among its threads. Thus
when it cannot have 100% local accesses, interestingly, it
may prefer to cluster its threads to a remote node (1 shared
cache) than spreading them across sockets (2 shared caches)
for partial local accesses.

Another interesting case is cluster-docs (Fig-
ure 10), whose performance degradation for 50% local ac-
cesses comparing to 100% local accesses is quite insignif-
icant (1-2%). However, the 0% local accesses case has
a significant performance impact. This is because that
cluster-docs’ threads contend for cache space [33].
Therefore, although spreading its threads (scenario 2) in-
creases remote accesses, it also increases cache space, alle-
viating the performance degradation.

[Corun] The 2nd-4th clusters of bars in each figure
demonstrate each application’s performance in scenario 4-6

workload description metric

cluster-docs Unsupervised Bayesian clustering tool to take keywords or text
documents and “explain” them with meaningful clusters.

throughput

bigtable storage software for massive amount of data average r/w latency

search-frontend-
render

Web search frontend server, collect results from many backends
and assembles html for user.

user time (secs)

Table 1. Datacenter Applications

 1.05x

solo +bigtable +render +docs

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 10. Normalized performance of
cluster-docs running alone and running
with 3 various co-runners

 1.05x

solo +bigtable +render +docs

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 11. Normalized performance of
Bigtable

 1.05x

solo +bigtable +render +docs

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 12. Normalized performance of
Web-search frontend render

mote accesses. For example, cluster-docs has a 12%
performance degradation when all accesses are remote, as
shown by the first cluster of bars in Figure 10. However,
Bigtable (Figure 11) stands out to be a curious case,
whose performance for 100% remote accesses is better than
50% remote accesses. This may be due to the fact that
Bigtable benefits from sharing cache among its own sib-
ling threads. As reported in recent work [33] that Bigtable
has a large amount of data sharing (confirmed by its perfor-
mance counter profiles) and thus its performance benefits
from sharing the last level cache among its threads. Thus
when it cannot have 100% local accesses, interestingly, it
may prefer to cluster its threads to a remote node (1 shared
cache) than spreading them across sockets (2 shared caches)
for partial local accesses.

Another interesting case is cluster-docs (Fig-
ure 10), whose performance degradation for 50% local ac-
cesses comparing to 100% local accesses is quite insignif-
icant (1-2%). However, the 0% local accesses case has
a significant performance impact. This is because that
cluster-docs’ threads contend for cache space [33].
Therefore, although spreading its threads (scenario 2) in-
creases remote accesses, it also increases cache space, alle-
viating the performance degradation.

[Corun] The 2nd-4th clusters of bars in each figure
demonstrate each application’s performance in scenario 4-6

workload description metric

cluster-docs Unsupervised Bayesian clustering tool to take keywords or text
documents and “explain” them with meaningful clusters.

throughput

bigtable storage software for massive amount of data average r/w latency

search-frontend-
render

Web search frontend server, collect results from many backends
and assembles html for user.

user time (secs)

Table 1. Datacenter Applications

 1.05x

solo +bigtable +render +docs

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 10. Normalized performance of
cluster-docs running alone and running
with 3 various co-runners

 1.05x

solo +bigtable +render +docs

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 11. Normalized performance of
Bigtable

 1.05x

solo +bigtable +render +docs

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 12. Normalized performance of
Web-search frontend render

mote accesses. For example, cluster-docs has a 12%
performance degradation when all accesses are remote, as
shown by the first cluster of bars in Figure 10. However,
Bigtable (Figure 11) stands out to be a curious case,
whose performance for 100% remote accesses is better than
50% remote accesses. This may be due to the fact that
Bigtable benefits from sharing cache among its own sib-
ling threads. As reported in recent work [33] that Bigtable
has a large amount of data sharing (confirmed by its perfor-
mance counter profiles) and thus its performance benefits
from sharing the last level cache among its threads. Thus
when it cannot have 100% local accesses, interestingly, it
may prefer to cluster its threads to a remote node (1 shared
cache) than spreading them across sockets (2 shared caches)
for partial local accesses.

Another interesting case is cluster-docs (Fig-
ure 10), whose performance degradation for 50% local ac-
cesses comparing to 100% local accesses is quite insignif-
icant (1-2%). However, the 0% local accesses case has
a significant performance impact. This is because that
cluster-docs’ threads contend for cache space [33].
Therefore, although spreading its threads (scenario 2) in-
creases remote accesses, it also increases cache space, alle-
viating the performance degradation.

[Corun] The 2nd-4th clusters of bars in each figure
demonstrate each application’s performance in scenario 4-6

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Cluster
-docs

Bigtable

Websearch
Frontend

Solo
1oo %

workload description metric

cluster-docs Unsupervised Bayesian clustering tool to take keywords or text
documents and “explain” them with meaningful clusters.

throughput

bigtable storage software for massive amount of data average r/w latency

search-frontend-
render

Web search frontend server, collect results from many backends
and assembles html for user.

user time (secs)

Table 1. Datacenter Applications

 1.05x

solo +bigtable +render +docs

No
rm

ali
ze

d P
erf

orm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 10. Normalized performance of
cluster-docs running alone and running
with 3 various co-runners

 1.05x

solo +bigtable +render +docs

No
rm

ali
ze

d P
erf

orm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 11. Normalized performance of
Bigtable

 1.05x

solo +bigtable +render +docs

No
rm

ali
ze

d P
erf

orm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 12. Normalized performance of
Web-search frontend render

mote accesses. For example, cluster-docs has a 12%
performance degradation when all accesses are remote, as
shown by the first cluster of bars in Figure 10. However,
Bigtable (Figure 11) stands out to be a curious case,
whose performance for 100% remote accesses is better than
50% remote accesses. This may be due to the fact that
Bigtable benefits from sharing cache among its own sib-
ling threads. As reported in recent work [33] that Bigtable
has a large amount of data sharing (confirmed by its perfor-
mance counter profiles) and thus its performance benefits
from sharing the last level cache among its threads. Thus
when it cannot have 100% local accesses, interestingly, it
may prefer to cluster its threads to a remote node (1 shared
cache) than spreading them across sockets (2 shared caches)
for partial local accesses.

Another interesting case is cluster-docs (Fig-
ure 10), whose performance degradation for 50% local ac-
cesses comparing to 100% local accesses is quite insignif-
icant (1-2%). However, the 0% local accesses case has
a significant performance impact. This is because that
cluster-docs’ threads contend for cache space [33].
Therefore, although spreading its threads (scenario 2) in-
creases remote accesses, it also increases cache space, alle-
viating the performance degradation.

[Corun] The 2nd-4th clusters of bars in each figure
demonstrate each application’s performance in scenario 4-6

50 %

workload description metric

cluster-docs Unsupervised Bayesian clustering tool to take keywords or text
documents and “explain” them with meaningful clusters.

throughput

bigtable storage software for massive amount of data average r/w latency

search-frontend-
render

Web search frontend server, collect results from many backends
and assembles html for user.

user time (secs)

Table 1. Datacenter Applications

 1.05x

solo +bigtable +render +docs

No
rm

ali
ze

d P
erf

orm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 10. Normalized performance of
cluster-docs running alone and running
with 3 various co-runners

 1.05x

solo +bigtable +render +docs

No
rm

ali
ze

d P
erf

orm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 11. Normalized performance of
Bigtable

 1.05x

solo +bigtable +render +docs

No
rm

ali
ze

d P
erf

orm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 12. Normalized performance of
Web-search frontend render

mote accesses. For example, cluster-docs has a 12%
performance degradation when all accesses are remote, as
shown by the first cluster of bars in Figure 10. However,
Bigtable (Figure 11) stands out to be a curious case,
whose performance for 100% remote accesses is better than
50% remote accesses. This may be due to the fact that
Bigtable benefits from sharing cache among its own sib-
ling threads. As reported in recent work [33] that Bigtable
has a large amount of data sharing (confirmed by its perfor-
mance counter profiles) and thus its performance benefits
from sharing the last level cache among its threads. Thus
when it cannot have 100% local accesses, interestingly, it
may prefer to cluster its threads to a remote node (1 shared
cache) than spreading them across sockets (2 shared caches)
for partial local accesses.

Another interesting case is cluster-docs (Fig-
ure 10), whose performance degradation for 50% local ac-
cesses comparing to 100% local accesses is quite insignif-
icant (1-2%). However, the 0% local accesses case has
a significant performance impact. This is because that
cluster-docs’ threads contend for cache space [33].
Therefore, although spreading its threads (scenario 2) in-
creases remote accesses, it also increases cache space, alle-
viating the performance degradation.

[Corun] The 2nd-4th clusters of bars in each figure
demonstrate each application’s performance in scenario 4-6

0%

X X X XX X

XX X XX X

X X X XX X

M-X

M-X

M-X

local access:

Monday, March 4, 13

Solo:

bigtable 0% local
access outperform
50% local access

workload description metric

cluster-docs Unsupervised Bayesian clustering tool to take keywords or text
documents and “explain” them with meaningful clusters.

throughput

bigtable storage software for massive amount of data average r/w latency

search-frontend-
render

Web search frontend server, collect results from many backends
and assembles html for user.

user time (secs)

Table 1. Datacenter Applications

 1.05x

solo +bigtable +render +docs

N
o
rm

al
iz

ed
 P

er
fo

rm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 10. Normalized performance of
cluster-docs running alone and running
with 3 various co-runners

 1.05x

solo +bigtable +render +docs

N
o
rm

al
iz

ed
 P

er
fo

rm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 11. Normalized performance of
Bigtable

 1.05x

solo +bigtable +render +docs

N
o
rm

al
iz

ed
 P

er
fo

rm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 12. Normalized performance of
Web-search frontend render

mote accesses. For example, cluster-docs has a 12%
performance degradation when all accesses are remote, as
shown by the first cluster of bars in Figure 10. However,
Bigtable (Figure 11) stands out to be a curious case,
whose performance for 100% remote accesses is better than
50% remote accesses. This may be due to the fact that
Bigtable benefits from sharing cache among its own sib-
ling threads. As reported in recent work [33] that Bigtable
has a large amount of data sharing (confirmed by its perfor-
mance counter profiles) and thus its performance benefits
from sharing the last level cache among its threads. Thus
when it cannot have 100% local accesses, interestingly, it
may prefer to cluster its threads to a remote node (1 shared
cache) than spreading them across sockets (2 shared caches)
for partial local accesses.

Another interesting case is cluster-docs (Fig-
ure 10), whose performance degradation for 50% local ac-
cesses comparing to 100% local accesses is quite insignif-
icant (1-2%). However, the 0% local accesses case has
a significant performance impact. This is because that
cluster-docs’ threads contend for cache space [33].
Therefore, although spreading its threads (scenario 2) in-
creases remote accesses, it also increases cache space, alle-
viating the performance degradation.

[Corun] The 2nd-4th clusters of bars in each figure
demonstrate each application’s performance in scenario 4-6

workload description metric

cluster-docs Unsupervised Bayesian clustering tool to take keywords or text
documents and “explain” them with meaningful clusters.

throughput

bigtable storage software for massive amount of data average r/w latency

search-frontend-
render

Web search frontend server, collect results from many backends
and assembles html for user.

user time (secs)

Table 1. Datacenter Applications

 1.05x

solo +bigtable +render +docs

N
o
rm

al
iz

ed
 P

er
fo

rm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 10. Normalized performance of
cluster-docs running alone and running
with 3 various co-runners

 1.05x

solo +bigtable +render +docs

N
o
rm

al
iz

ed
 P

er
fo

rm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 11. Normalized performance of
Bigtable

 1.05x

solo +bigtable +render +docs

N
o
rm

al
iz

ed
 P

er
fo

rm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 12. Normalized performance of
Web-search frontend render

mote accesses. For example, cluster-docs has a 12%
performance degradation when all accesses are remote, as
shown by the first cluster of bars in Figure 10. However,
Bigtable (Figure 11) stands out to be a curious case,
whose performance for 100% remote accesses is better than
50% remote accesses. This may be due to the fact that
Bigtable benefits from sharing cache among its own sib-
ling threads. As reported in recent work [33] that Bigtable
has a large amount of data sharing (confirmed by its perfor-
mance counter profiles) and thus its performance benefits
from sharing the last level cache among its threads. Thus
when it cannot have 100% local accesses, interestingly, it
may prefer to cluster its threads to a remote node (1 shared
cache) than spreading them across sockets (2 shared caches)
for partial local accesses.

Another interesting case is cluster-docs (Fig-
ure 10), whose performance degradation for 50% local ac-
cesses comparing to 100% local accesses is quite insignif-
icant (1-2%). However, the 0% local accesses case has
a significant performance impact. This is because that
cluster-docs’ threads contend for cache space [33].
Therefore, although spreading its threads (scenario 2) in-
creases remote accesses, it also increases cache space, alle-
viating the performance degradation.

[Corun] The 2nd-4th clusters of bars in each figure
demonstrate each application’s performance in scenario 4-6

workload description metric

cluster-docs Unsupervised Bayesian clustering tool to take keywords or text
documents and “explain” them with meaningful clusters.

throughput

bigtable storage software for massive amount of data average r/w latency

search-frontend-
render

Web search frontend server, collect results from many backends
and assembles html for user.

user time (secs)

Table 1. Datacenter Applications

 1.05x

solo +bigtable +render +docs

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 10. Normalized performance of
cluster-docs running alone and running
with 3 various co-runners

 1.05x

solo +bigtable +render +docs

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 11. Normalized performance of
Bigtable

 1.05x

solo +bigtable +render +docs

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 12. Normalized performance of
Web-search frontend render

mote accesses. For example, cluster-docs has a 12%
performance degradation when all accesses are remote, as
shown by the first cluster of bars in Figure 10. However,
Bigtable (Figure 11) stands out to be a curious case,
whose performance for 100% remote accesses is better than
50% remote accesses. This may be due to the fact that
Bigtable benefits from sharing cache among its own sib-
ling threads. As reported in recent work [33] that Bigtable
has a large amount of data sharing (confirmed by its perfor-
mance counter profiles) and thus its performance benefits
from sharing the last level cache among its threads. Thus
when it cannot have 100% local accesses, interestingly, it
may prefer to cluster its threads to a remote node (1 shared
cache) than spreading them across sockets (2 shared caches)
for partial local accesses.

Another interesting case is cluster-docs (Fig-
ure 10), whose performance degradation for 50% local ac-
cesses comparing to 100% local accesses is quite insignif-
icant (1-2%). However, the 0% local accesses case has
a significant performance impact. This is because that
cluster-docs’ threads contend for cache space [33].
Therefore, although spreading its threads (scenario 2) in-
creases remote accesses, it also increases cache space, alle-
viating the performance degradation.

[Corun] The 2nd-4th clusters of bars in each figure
demonstrate each application’s performance in scenario 4-6

workload description metric

cluster-docs Unsupervised Bayesian clustering tool to take keywords or text
documents and “explain” them with meaningful clusters.

throughput

bigtable storage software for massive amount of data average r/w latency

search-frontend-
render

Web search frontend server, collect results from many backends
and assembles html for user.

user time (secs)

Table 1. Datacenter Applications

 1.05x

solo +bigtable +render +docs

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 10. Normalized performance of
cluster-docs running alone and running
with 3 various co-runners

 1.05x

solo +bigtable +render +docs

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 11. Normalized performance of
Bigtable

 1.05x

solo +bigtable +render +docs

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 12. Normalized performance of
Web-search frontend render

mote accesses. For example, cluster-docs has a 12%
performance degradation when all accesses are remote, as
shown by the first cluster of bars in Figure 10. However,
Bigtable (Figure 11) stands out to be a curious case,
whose performance for 100% remote accesses is better than
50% remote accesses. This may be due to the fact that
Bigtable benefits from sharing cache among its own sib-
ling threads. As reported in recent work [33] that Bigtable
has a large amount of data sharing (confirmed by its perfor-
mance counter profiles) and thus its performance benefits
from sharing the last level cache among its threads. Thus
when it cannot have 100% local accesses, interestingly, it
may prefer to cluster its threads to a remote node (1 shared
cache) than spreading them across sockets (2 shared caches)
for partial local accesses.

Another interesting case is cluster-docs (Fig-
ure 10), whose performance degradation for 50% local ac-
cesses comparing to 100% local accesses is quite insignif-
icant (1-2%). However, the 0% local accesses case has
a significant performance impact. This is because that
cluster-docs’ threads contend for cache space [33].
Therefore, although spreading its threads (scenario 2) in-
creases remote accesses, it also increases cache space, alle-
viating the performance degradation.

[Corun] The 2nd-4th clusters of bars in each figure
demonstrate each application’s performance in scenario 4-6

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Cluster
-docs

Bigtable

Websearch
Frontend

Solo
1oo %

workload description metric

cluster-docs Unsupervised Bayesian clustering tool to take keywords or text
documents and “explain” them with meaningful clusters.

throughput

bigtable storage software for massive amount of data average r/w latency

search-frontend-
render

Web search frontend server, collect results from many backends
and assembles html for user.

user time (secs)

Table 1. Datacenter Applications

 1.05x

solo +bigtable +render +docs

No
rm

ali
ze

d P
erf

orm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 10. Normalized performance of
cluster-docs running alone and running
with 3 various co-runners

 1.05x

solo +bigtable +render +docs

No
rm

ali
ze

d P
erf

orm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 11. Normalized performance of
Bigtable

 1.05x

solo +bigtable +render +docs

No
rm

ali
ze

d P
erf

orm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 12. Normalized performance of
Web-search frontend render

mote accesses. For example, cluster-docs has a 12%
performance degradation when all accesses are remote, as
shown by the first cluster of bars in Figure 10. However,
Bigtable (Figure 11) stands out to be a curious case,
whose performance for 100% remote accesses is better than
50% remote accesses. This may be due to the fact that
Bigtable benefits from sharing cache among its own sib-
ling threads. As reported in recent work [33] that Bigtable
has a large amount of data sharing (confirmed by its perfor-
mance counter profiles) and thus its performance benefits
from sharing the last level cache among its threads. Thus
when it cannot have 100% local accesses, interestingly, it
may prefer to cluster its threads to a remote node (1 shared
cache) than spreading them across sockets (2 shared caches)
for partial local accesses.

Another interesting case is cluster-docs (Fig-
ure 10), whose performance degradation for 50% local ac-
cesses comparing to 100% local accesses is quite insignif-
icant (1-2%). However, the 0% local accesses case has
a significant performance impact. This is because that
cluster-docs’ threads contend for cache space [33].
Therefore, although spreading its threads (scenario 2) in-
creases remote accesses, it also increases cache space, alle-
viating the performance degradation.

[Corun] The 2nd-4th clusters of bars in each figure
demonstrate each application’s performance in scenario 4-6

50 %

workload description metric

cluster-docs Unsupervised Bayesian clustering tool to take keywords or text
documents and “explain” them with meaningful clusters.

throughput

bigtable storage software for massive amount of data average r/w latency

search-frontend-
render

Web search frontend server, collect results from many backends
and assembles html for user.

user time (secs)

Table 1. Datacenter Applications

 1.05x

solo +bigtable +render +docs

No
rm

ali
ze

d P
erf

orm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 10. Normalized performance of
cluster-docs running alone and running
with 3 various co-runners

 1.05x

solo +bigtable +render +docs

No
rm

ali
ze

d P
erf

orm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 11. Normalized performance of
Bigtable

 1.05x

solo +bigtable +render +docs

No
rm

ali
ze

d P
erf

orm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 12. Normalized performance of
Web-search frontend render

mote accesses. For example, cluster-docs has a 12%
performance degradation when all accesses are remote, as
shown by the first cluster of bars in Figure 10. However,
Bigtable (Figure 11) stands out to be a curious case,
whose performance for 100% remote accesses is better than
50% remote accesses. This may be due to the fact that
Bigtable benefits from sharing cache among its own sib-
ling threads. As reported in recent work [33] that Bigtable
has a large amount of data sharing (confirmed by its perfor-
mance counter profiles) and thus its performance benefits
from sharing the last level cache among its threads. Thus
when it cannot have 100% local accesses, interestingly, it
may prefer to cluster its threads to a remote node (1 shared
cache) than spreading them across sockets (2 shared caches)
for partial local accesses.

Another interesting case is cluster-docs (Fig-
ure 10), whose performance degradation for 50% local ac-
cesses comparing to 100% local accesses is quite insignif-
icant (1-2%). However, the 0% local accesses case has
a significant performance impact. This is because that
cluster-docs’ threads contend for cache space [33].
Therefore, although spreading its threads (scenario 2) in-
creases remote accesses, it also increases cache space, alle-
viating the performance degradation.

[Corun] The 2nd-4th clusters of bars in each figure
demonstrate each application’s performance in scenario 4-6

0%

X X X XX X

XX X XX X

X X X XX X

M-X

M-X

M-X

local access:

Monday, March 4, 13

Solo:

bigtable 0% local
access outperform
50% local access

workload description metric

cluster-docs Unsupervised Bayesian clustering tool to take keywords or text
documents and “explain” them with meaningful clusters.

throughput

bigtable storage software for massive amount of data average r/w latency

search-frontend-
render

Web search frontend server, collect results from many backends
and assembles html for user.

user time (secs)

Table 1. Datacenter Applications

 1.05x

solo +bigtable +render +docs

N
o
rm

al
iz

ed
 P

er
fo

rm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 10. Normalized performance of
cluster-docs running alone and running
with 3 various co-runners

 1.05x

solo +bigtable +render +docs

N
o
rm

al
iz

ed
 P

er
fo

rm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 11. Normalized performance of
Bigtable

 1.05x

solo +bigtable +render +docs

N
o
rm

al
iz

ed
 P

er
fo

rm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 12. Normalized performance of
Web-search frontend render

mote accesses. For example, cluster-docs has a 12%
performance degradation when all accesses are remote, as
shown by the first cluster of bars in Figure 10. However,
Bigtable (Figure 11) stands out to be a curious case,
whose performance for 100% remote accesses is better than
50% remote accesses. This may be due to the fact that
Bigtable benefits from sharing cache among its own sib-
ling threads. As reported in recent work [33] that Bigtable
has a large amount of data sharing (confirmed by its perfor-
mance counter profiles) and thus its performance benefits
from sharing the last level cache among its threads. Thus
when it cannot have 100% local accesses, interestingly, it
may prefer to cluster its threads to a remote node (1 shared
cache) than spreading them across sockets (2 shared caches)
for partial local accesses.

Another interesting case is cluster-docs (Fig-
ure 10), whose performance degradation for 50% local ac-
cesses comparing to 100% local accesses is quite insignif-
icant (1-2%). However, the 0% local accesses case has
a significant performance impact. This is because that
cluster-docs’ threads contend for cache space [33].
Therefore, although spreading its threads (scenario 2) in-
creases remote accesses, it also increases cache space, alle-
viating the performance degradation.

[Corun] The 2nd-4th clusters of bars in each figure
demonstrate each application’s performance in scenario 4-6

workload description metric

cluster-docs Unsupervised Bayesian clustering tool to take keywords or text
documents and “explain” them with meaningful clusters.

throughput

bigtable storage software for massive amount of data average r/w latency

search-frontend-
render

Web search frontend server, collect results from many backends
and assembles html for user.

user time (secs)

Table 1. Datacenter Applications

 1.05x

solo +bigtable +render +docs

N
o
rm

al
iz

ed
 P

er
fo

rm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 10. Normalized performance of
cluster-docs running alone and running
with 3 various co-runners

 1.05x

solo +bigtable +render +docs

N
o
rm

al
iz

ed
 P

er
fo

rm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 11. Normalized performance of
Bigtable

 1.05x

solo +bigtable +render +docs

N
o
rm

al
iz

ed
 P

er
fo

rm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 12. Normalized performance of
Web-search frontend render

mote accesses. For example, cluster-docs has a 12%
performance degradation when all accesses are remote, as
shown by the first cluster of bars in Figure 10. However,
Bigtable (Figure 11) stands out to be a curious case,
whose performance for 100% remote accesses is better than
50% remote accesses. This may be due to the fact that
Bigtable benefits from sharing cache among its own sib-
ling threads. As reported in recent work [33] that Bigtable
has a large amount of data sharing (confirmed by its perfor-
mance counter profiles) and thus its performance benefits
from sharing the last level cache among its threads. Thus
when it cannot have 100% local accesses, interestingly, it
may prefer to cluster its threads to a remote node (1 shared
cache) than spreading them across sockets (2 shared caches)
for partial local accesses.

Another interesting case is cluster-docs (Fig-
ure 10), whose performance degradation for 50% local ac-
cesses comparing to 100% local accesses is quite insignif-
icant (1-2%). However, the 0% local accesses case has
a significant performance impact. This is because that
cluster-docs’ threads contend for cache space [33].
Therefore, although spreading its threads (scenario 2) in-
creases remote accesses, it also increases cache space, alle-
viating the performance degradation.

[Corun] The 2nd-4th clusters of bars in each figure
demonstrate each application’s performance in scenario 4-6

workload description metric

cluster-docs Unsupervised Bayesian clustering tool to take keywords or text
documents and “explain” them with meaningful clusters.

throughput

bigtable storage software for massive amount of data average r/w latency

search-frontend-
render

Web search frontend server, collect results from many backends
and assembles html for user.

user time (secs)

Table 1. Datacenter Applications

 1.05x

solo +bigtable +render +docs

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 10. Normalized performance of
cluster-docs running alone and running
with 3 various co-runners

 1.05x

solo +bigtable +render +docs

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 11. Normalized performance of
Bigtable

 1.05x

solo +bigtable +render +docs

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 12. Normalized performance of
Web-search frontend render

mote accesses. For example, cluster-docs has a 12%
performance degradation when all accesses are remote, as
shown by the first cluster of bars in Figure 10. However,
Bigtable (Figure 11) stands out to be a curious case,
whose performance for 100% remote accesses is better than
50% remote accesses. This may be due to the fact that
Bigtable benefits from sharing cache among its own sib-
ling threads. As reported in recent work [33] that Bigtable
has a large amount of data sharing (confirmed by its perfor-
mance counter profiles) and thus its performance benefits
from sharing the last level cache among its threads. Thus
when it cannot have 100% local accesses, interestingly, it
may prefer to cluster its threads to a remote node (1 shared
cache) than spreading them across sockets (2 shared caches)
for partial local accesses.

Another interesting case is cluster-docs (Fig-
ure 10), whose performance degradation for 50% local ac-
cesses comparing to 100% local accesses is quite insignif-
icant (1-2%). However, the 0% local accesses case has
a significant performance impact. This is because that
cluster-docs’ threads contend for cache space [33].
Therefore, although spreading its threads (scenario 2) in-
creases remote accesses, it also increases cache space, alle-
viating the performance degradation.

[Corun] The 2nd-4th clusters of bars in each figure
demonstrate each application’s performance in scenario 4-6

workload description metric

cluster-docs Unsupervised Bayesian clustering tool to take keywords or text
documents and “explain” them with meaningful clusters.

throughput

bigtable storage software for massive amount of data average r/w latency

search-frontend-
render

Web search frontend server, collect results from many backends
and assembles html for user.

user time (secs)

Table 1. Datacenter Applications

 1.05x

solo +bigtable +render +docs

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 10. Normalized performance of
cluster-docs running alone and running
with 3 various co-runners

 1.05x

solo +bigtable +render +docs

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 11. Normalized performance of
Bigtable

 1.05x

solo +bigtable +render +docs

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 12. Normalized performance of
Web-search frontend render

mote accesses. For example, cluster-docs has a 12%
performance degradation when all accesses are remote, as
shown by the first cluster of bars in Figure 10. However,
Bigtable (Figure 11) stands out to be a curious case,
whose performance for 100% remote accesses is better than
50% remote accesses. This may be due to the fact that
Bigtable benefits from sharing cache among its own sib-
ling threads. As reported in recent work [33] that Bigtable
has a large amount of data sharing (confirmed by its perfor-
mance counter profiles) and thus its performance benefits
from sharing the last level cache among its threads. Thus
when it cannot have 100% local accesses, interestingly, it
may prefer to cluster its threads to a remote node (1 shared
cache) than spreading them across sockets (2 shared caches)
for partial local accesses.

Another interesting case is cluster-docs (Fig-
ure 10), whose performance degradation for 50% local ac-
cesses comparing to 100% local accesses is quite insignif-
icant (1-2%). However, the 0% local accesses case has
a significant performance impact. This is because that
cluster-docs’ threads contend for cache space [33].
Therefore, although spreading its threads (scenario 2) in-
creases remote accesses, it also increases cache space, alle-
viating the performance degradation.

[Corun] The 2nd-4th clusters of bars in each figure
demonstrate each application’s performance in scenario 4-6

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Cluster
-docs

Bigtable

Websearch
Frontend

Corun
1oo %

workload description metric

cluster-docs Unsupervised Bayesian clustering tool to take keywords or text
documents and “explain” them with meaningful clusters.

throughput

bigtable storage software for massive amount of data average r/w latency

search-frontend-
render

Web search frontend server, collect results from many backends
and assembles html for user.

user time (secs)

Table 1. Datacenter Applications

 1.05x

solo +bigtable +render +docs

No
rm

ali
ze

d P
erf

orm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 10. Normalized performance of
cluster-docs running alone and running
with 3 various co-runners

 1.05x

solo +bigtable +render +docs

No
rm

ali
ze

d P
erf

orm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 11. Normalized performance of
Bigtable

 1.05x

solo +bigtable +render +docs

No
rm

ali
ze

d P
erf

orm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 12. Normalized performance of
Web-search frontend render

mote accesses. For example, cluster-docs has a 12%
performance degradation when all accesses are remote, as
shown by the first cluster of bars in Figure 10. However,
Bigtable (Figure 11) stands out to be a curious case,
whose performance for 100% remote accesses is better than
50% remote accesses. This may be due to the fact that
Bigtable benefits from sharing cache among its own sib-
ling threads. As reported in recent work [33] that Bigtable
has a large amount of data sharing (confirmed by its perfor-
mance counter profiles) and thus its performance benefits
from sharing the last level cache among its threads. Thus
when it cannot have 100% local accesses, interestingly, it
may prefer to cluster its threads to a remote node (1 shared
cache) than spreading them across sockets (2 shared caches)
for partial local accesses.

Another interesting case is cluster-docs (Fig-
ure 10), whose performance degradation for 50% local ac-
cesses comparing to 100% local accesses is quite insignif-
icant (1-2%). However, the 0% local accesses case has
a significant performance impact. This is because that
cluster-docs’ threads contend for cache space [33].
Therefore, although spreading its threads (scenario 2) in-
creases remote accesses, it also increases cache space, alle-
viating the performance degradation.

[Corun] The 2nd-4th clusters of bars in each figure
demonstrate each application’s performance in scenario 4-6

50 %

workload description metric

cluster-docs Unsupervised Bayesian clustering tool to take keywords or text
documents and “explain” them with meaningful clusters.

throughput

bigtable storage software for massive amount of data average r/w latency

search-frontend-
render

Web search frontend server, collect results from many backends
and assembles html for user.

user time (secs)

Table 1. Datacenter Applications

 1.05x

solo +bigtable +render +docs

No
rm

ali
ze

d P
erf

orm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 10. Normalized performance of
cluster-docs running alone and running
with 3 various co-runners

 1.05x

solo +bigtable +render +docs

No
rm

ali
ze

d P
erf

orm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 11. Normalized performance of
Bigtable

 1.05x

solo +bigtable +render +docs

No
rm

ali
ze

d P
erf

orm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 12. Normalized performance of
Web-search frontend render

mote accesses. For example, cluster-docs has a 12%
performance degradation when all accesses are remote, as
shown by the first cluster of bars in Figure 10. However,
Bigtable (Figure 11) stands out to be a curious case,
whose performance for 100% remote accesses is better than
50% remote accesses. This may be due to the fact that
Bigtable benefits from sharing cache among its own sib-
ling threads. As reported in recent work [33] that Bigtable
has a large amount of data sharing (confirmed by its perfor-
mance counter profiles) and thus its performance benefits
from sharing the last level cache among its threads. Thus
when it cannot have 100% local accesses, interestingly, it
may prefer to cluster its threads to a remote node (1 shared
cache) than spreading them across sockets (2 shared caches)
for partial local accesses.

Another interesting case is cluster-docs (Fig-
ure 10), whose performance degradation for 50% local ac-
cesses comparing to 100% local accesses is quite insignif-
icant (1-2%). However, the 0% local accesses case has
a significant performance impact. This is because that
cluster-docs’ threads contend for cache space [33].
Therefore, although spreading its threads (scenario 2) in-
creases remote accesses, it also increases cache space, alle-
viating the performance degradation.

[Corun] The 2nd-4th clusters of bars in each figure
demonstrate each application’s performance in scenario 4-6

0%

X X X XX X

XX X XX X

X X X XX X

M-X

M-X

M-X

local access:

Monday, March 4, 13

Solo:

bigtable 0% local
access outperform
50% local access

workload description metric

cluster-docs Unsupervised Bayesian clustering tool to take keywords or text
documents and “explain” them with meaningful clusters.

throughput

bigtable storage software for massive amount of data average r/w latency

search-frontend-
render

Web search frontend server, collect results from many backends
and assembles html for user.

user time (secs)

Table 1. Datacenter Applications

 1.05x

solo +bigtable +render +docs

N
o
rm

al
iz

ed
 P

er
fo

rm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 10. Normalized performance of
cluster-docs running alone and running
with 3 various co-runners

 1.05x

solo +bigtable +render +docs

N
o
rm

al
iz

ed
 P

er
fo

rm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 11. Normalized performance of
Bigtable

 1.05x

solo +bigtable +render +docs

N
o
rm

al
iz

ed
 P

er
fo

rm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 12. Normalized performance of
Web-search frontend render

mote accesses. For example, cluster-docs has a 12%
performance degradation when all accesses are remote, as
shown by the first cluster of bars in Figure 10. However,
Bigtable (Figure 11) stands out to be a curious case,
whose performance for 100% remote accesses is better than
50% remote accesses. This may be due to the fact that
Bigtable benefits from sharing cache among its own sib-
ling threads. As reported in recent work [33] that Bigtable
has a large amount of data sharing (confirmed by its perfor-
mance counter profiles) and thus its performance benefits
from sharing the last level cache among its threads. Thus
when it cannot have 100% local accesses, interestingly, it
may prefer to cluster its threads to a remote node (1 shared
cache) than spreading them across sockets (2 shared caches)
for partial local accesses.

Another interesting case is cluster-docs (Fig-
ure 10), whose performance degradation for 50% local ac-
cesses comparing to 100% local accesses is quite insignif-
icant (1-2%). However, the 0% local accesses case has
a significant performance impact. This is because that
cluster-docs’ threads contend for cache space [33].
Therefore, although spreading its threads (scenario 2) in-
creases remote accesses, it also increases cache space, alle-
viating the performance degradation.

[Corun] The 2nd-4th clusters of bars in each figure
demonstrate each application’s performance in scenario 4-6

workload description metric

cluster-docs Unsupervised Bayesian clustering tool to take keywords or text
documents and “explain” them with meaningful clusters.

throughput

bigtable storage software for massive amount of data average r/w latency

search-frontend-
render

Web search frontend server, collect results from many backends
and assembles html for user.

user time (secs)

Table 1. Datacenter Applications

 1.05x

solo +bigtable +render +docs

N
o
rm

al
iz

ed
 P

er
fo

rm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 10. Normalized performance of
cluster-docs running alone and running
with 3 various co-runners

 1.05x

solo +bigtable +render +docs

N
o
rm

al
iz

ed
 P

er
fo

rm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 11. Normalized performance of
Bigtable

 1.05x

solo +bigtable +render +docs

N
o
rm

al
iz

ed
 P

er
fo

rm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 12. Normalized performance of
Web-search frontend render

mote accesses. For example, cluster-docs has a 12%
performance degradation when all accesses are remote, as
shown by the first cluster of bars in Figure 10. However,
Bigtable (Figure 11) stands out to be a curious case,
whose performance for 100% remote accesses is better than
50% remote accesses. This may be due to the fact that
Bigtable benefits from sharing cache among its own sib-
ling threads. As reported in recent work [33] that Bigtable
has a large amount of data sharing (confirmed by its perfor-
mance counter profiles) and thus its performance benefits
from sharing the last level cache among its threads. Thus
when it cannot have 100% local accesses, interestingly, it
may prefer to cluster its threads to a remote node (1 shared
cache) than spreading them across sockets (2 shared caches)
for partial local accesses.

Another interesting case is cluster-docs (Fig-
ure 10), whose performance degradation for 50% local ac-
cesses comparing to 100% local accesses is quite insignif-
icant (1-2%). However, the 0% local accesses case has
a significant performance impact. This is because that
cluster-docs’ threads contend for cache space [33].
Therefore, although spreading its threads (scenario 2) in-
creases remote accesses, it also increases cache space, alle-
viating the performance degradation.

[Corun] The 2nd-4th clusters of bars in each figure
demonstrate each application’s performance in scenario 4-6

workload description metric

cluster-docs Unsupervised Bayesian clustering tool to take keywords or text
documents and “explain” them with meaningful clusters.

throughput

bigtable storage software for massive amount of data average r/w latency

search-frontend-
render

Web search frontend server, collect results from many backends
and assembles html for user.

user time (secs)

Table 1. Datacenter Applications

 1.05x

solo +bigtable +render +docs

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 10. Normalized performance of
cluster-docs running alone and running
with 3 various co-runners

 1.05x

solo +bigtable +render +docs

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 11. Normalized performance of
Bigtable

 1.05x

solo +bigtable +render +docs

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 12. Normalized performance of
Web-search frontend render

mote accesses. For example, cluster-docs has a 12%
performance degradation when all accesses are remote, as
shown by the first cluster of bars in Figure 10. However,
Bigtable (Figure 11) stands out to be a curious case,
whose performance for 100% remote accesses is better than
50% remote accesses. This may be due to the fact that
Bigtable benefits from sharing cache among its own sib-
ling threads. As reported in recent work [33] that Bigtable
has a large amount of data sharing (confirmed by its perfor-
mance counter profiles) and thus its performance benefits
from sharing the last level cache among its threads. Thus
when it cannot have 100% local accesses, interestingly, it
may prefer to cluster its threads to a remote node (1 shared
cache) than spreading them across sockets (2 shared caches)
for partial local accesses.

Another interesting case is cluster-docs (Fig-
ure 10), whose performance degradation for 50% local ac-
cesses comparing to 100% local accesses is quite insignif-
icant (1-2%). However, the 0% local accesses case has
a significant performance impact. This is because that
cluster-docs’ threads contend for cache space [33].
Therefore, although spreading its threads (scenario 2) in-
creases remote accesses, it also increases cache space, alle-
viating the performance degradation.

[Corun] The 2nd-4th clusters of bars in each figure
demonstrate each application’s performance in scenario 4-6

workload description metric

cluster-docs Unsupervised Bayesian clustering tool to take keywords or text
documents and “explain” them with meaningful clusters.

throughput

bigtable storage software for massive amount of data average r/w latency

search-frontend-
render

Web search frontend server, collect results from many backends
and assembles html for user.

user time (secs)

Table 1. Datacenter Applications

 1.05x

solo +bigtable +render +docs

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 10. Normalized performance of
cluster-docs running alone and running
with 3 various co-runners

 1.05x

solo +bigtable +render +docs

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 11. Normalized performance of
Bigtable

 1.05x

solo +bigtable +render +docs

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 12. Normalized performance of
Web-search frontend render

mote accesses. For example, cluster-docs has a 12%
performance degradation when all accesses are remote, as
shown by the first cluster of bars in Figure 10. However,
Bigtable (Figure 11) stands out to be a curious case,
whose performance for 100% remote accesses is better than
50% remote accesses. This may be due to the fact that
Bigtable benefits from sharing cache among its own sib-
ling threads. As reported in recent work [33] that Bigtable
has a large amount of data sharing (confirmed by its perfor-
mance counter profiles) and thus its performance benefits
from sharing the last level cache among its threads. Thus
when it cannot have 100% local accesses, interestingly, it
may prefer to cluster its threads to a remote node (1 shared
cache) than spreading them across sockets (2 shared caches)
for partial local accesses.

Another interesting case is cluster-docs (Fig-
ure 10), whose performance degradation for 50% local ac-
cesses comparing to 100% local accesses is quite insignif-
icant (1-2%). However, the 0% local accesses case has
a significant performance impact. This is because that
cluster-docs’ threads contend for cache space [33].
Therefore, although spreading its threads (scenario 2) in-
creases remote accesses, it also increases cache space, alle-
viating the performance degradation.

[Corun] The 2nd-4th clusters of bars in each figure
demonstrate each application’s performance in scenario 4-6

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Cluster
-docs

Bigtable

Websearch
Frontend

Corun

Corun:

websearch: depends
on the corunner, the
performance ranking
changes

1oo %

workload description metric

cluster-docs Unsupervised Bayesian clustering tool to take keywords or text
documents and “explain” them with meaningful clusters.

throughput

bigtable storage software for massive amount of data average r/w latency

search-frontend-
render

Web search frontend server, collect results from many backends
and assembles html for user.

user time (secs)

Table 1. Datacenter Applications

 1.05x

solo +bigtable +render +docs

No
rm

ali
ze

d P
erf

orm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 10. Normalized performance of
cluster-docs running alone and running
with 3 various co-runners

 1.05x

solo +bigtable +render +docs

No
rm

ali
ze

d P
erf

orm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 11. Normalized performance of
Bigtable

 1.05x

solo +bigtable +render +docs

No
rm

ali
ze

d P
erf

orm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 12. Normalized performance of
Web-search frontend render

mote accesses. For example, cluster-docs has a 12%
performance degradation when all accesses are remote, as
shown by the first cluster of bars in Figure 10. However,
Bigtable (Figure 11) stands out to be a curious case,
whose performance for 100% remote accesses is better than
50% remote accesses. This may be due to the fact that
Bigtable benefits from sharing cache among its own sib-
ling threads. As reported in recent work [33] that Bigtable
has a large amount of data sharing (confirmed by its perfor-
mance counter profiles) and thus its performance benefits
from sharing the last level cache among its threads. Thus
when it cannot have 100% local accesses, interestingly, it
may prefer to cluster its threads to a remote node (1 shared
cache) than spreading them across sockets (2 shared caches)
for partial local accesses.

Another interesting case is cluster-docs (Fig-
ure 10), whose performance degradation for 50% local ac-
cesses comparing to 100% local accesses is quite insignif-
icant (1-2%). However, the 0% local accesses case has
a significant performance impact. This is because that
cluster-docs’ threads contend for cache space [33].
Therefore, although spreading its threads (scenario 2) in-
creases remote accesses, it also increases cache space, alle-
viating the performance degradation.

[Corun] The 2nd-4th clusters of bars in each figure
demonstrate each application’s performance in scenario 4-6

50 %

workload description metric

cluster-docs Unsupervised Bayesian clustering tool to take keywords or text
documents and “explain” them with meaningful clusters.

throughput

bigtable storage software for massive amount of data average r/w latency

search-frontend-
render

Web search frontend server, collect results from many backends
and assembles html for user.

user time (secs)

Table 1. Datacenter Applications

 1.05x

solo +bigtable +render +docs

No
rm

ali
ze

d P
erf

orm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 10. Normalized performance of
cluster-docs running alone and running
with 3 various co-runners

 1.05x

solo +bigtable +render +docs

No
rm

ali
ze

d P
erf

orm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 11. Normalized performance of
Bigtable

 1.05x

solo +bigtable +render +docs

No
rm

ali
ze

d P
erf

orm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 12. Normalized performance of
Web-search frontend render

mote accesses. For example, cluster-docs has a 12%
performance degradation when all accesses are remote, as
shown by the first cluster of bars in Figure 10. However,
Bigtable (Figure 11) stands out to be a curious case,
whose performance for 100% remote accesses is better than
50% remote accesses. This may be due to the fact that
Bigtable benefits from sharing cache among its own sib-
ling threads. As reported in recent work [33] that Bigtable
has a large amount of data sharing (confirmed by its perfor-
mance counter profiles) and thus its performance benefits
from sharing the last level cache among its threads. Thus
when it cannot have 100% local accesses, interestingly, it
may prefer to cluster its threads to a remote node (1 shared
cache) than spreading them across sockets (2 shared caches)
for partial local accesses.

Another interesting case is cluster-docs (Fig-
ure 10), whose performance degradation for 50% local ac-
cesses comparing to 100% local accesses is quite insignif-
icant (1-2%). However, the 0% local accesses case has
a significant performance impact. This is because that
cluster-docs’ threads contend for cache space [33].
Therefore, although spreading its threads (scenario 2) in-
creases remote accesses, it also increases cache space, alle-
viating the performance degradation.

[Corun] The 2nd-4th clusters of bars in each figure
demonstrate each application’s performance in scenario 4-6

0%

X X X XX X

XX X XX X

X X X XX X

M-X

M-X

M-X

local access:

Monday, March 4, 13

Solo:

bigtable 0% local
access outperform
50% local access

workload description metric

cluster-docs Unsupervised Bayesian clustering tool to take keywords or text
documents and “explain” them with meaningful clusters.

throughput

bigtable storage software for massive amount of data average r/w latency

search-frontend-
render

Web search frontend server, collect results from many backends
and assembles html for user.

user time (secs)

Table 1. Datacenter Applications

 1.05x

solo +bigtable +render +docs

N
o
rm

al
iz

ed
 P

er
fo

rm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 10. Normalized performance of
cluster-docs running alone and running
with 3 various co-runners

 1.05x

solo +bigtable +render +docs

N
o
rm

al
iz

ed
 P

er
fo

rm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 11. Normalized performance of
Bigtable

 1.05x

solo +bigtable +render +docs

N
o
rm

al
iz

ed
 P

er
fo

rm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 12. Normalized performance of
Web-search frontend render

mote accesses. For example, cluster-docs has a 12%
performance degradation when all accesses are remote, as
shown by the first cluster of bars in Figure 10. However,
Bigtable (Figure 11) stands out to be a curious case,
whose performance for 100% remote accesses is better than
50% remote accesses. This may be due to the fact that
Bigtable benefits from sharing cache among its own sib-
ling threads. As reported in recent work [33] that Bigtable
has a large amount of data sharing (confirmed by its perfor-
mance counter profiles) and thus its performance benefits
from sharing the last level cache among its threads. Thus
when it cannot have 100% local accesses, interestingly, it
may prefer to cluster its threads to a remote node (1 shared
cache) than spreading them across sockets (2 shared caches)
for partial local accesses.

Another interesting case is cluster-docs (Fig-
ure 10), whose performance degradation for 50% local ac-
cesses comparing to 100% local accesses is quite insignif-
icant (1-2%). However, the 0% local accesses case has
a significant performance impact. This is because that
cluster-docs’ threads contend for cache space [33].
Therefore, although spreading its threads (scenario 2) in-
creases remote accesses, it also increases cache space, alle-
viating the performance degradation.

[Corun] The 2nd-4th clusters of bars in each figure
demonstrate each application’s performance in scenario 4-6

workload description metric

cluster-docs Unsupervised Bayesian clustering tool to take keywords or text
documents and “explain” them with meaningful clusters.

throughput

bigtable storage software for massive amount of data average r/w latency

search-frontend-
render

Web search frontend server, collect results from many backends
and assembles html for user.

user time (secs)

Table 1. Datacenter Applications

 1.05x

solo +bigtable +render +docs

N
o
rm

al
iz

ed
 P

er
fo

rm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 10. Normalized performance of
cluster-docs running alone and running
with 3 various co-runners

 1.05x

solo +bigtable +render +docs

N
o
rm

al
iz

ed
 P

er
fo

rm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 11. Normalized performance of
Bigtable

 1.05x

solo +bigtable +render +docs

N
o
rm

al
iz

ed
 P

er
fo

rm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 12. Normalized performance of
Web-search frontend render

mote accesses. For example, cluster-docs has a 12%
performance degradation when all accesses are remote, as
shown by the first cluster of bars in Figure 10. However,
Bigtable (Figure 11) stands out to be a curious case,
whose performance for 100% remote accesses is better than
50% remote accesses. This may be due to the fact that
Bigtable benefits from sharing cache among its own sib-
ling threads. As reported in recent work [33] that Bigtable
has a large amount of data sharing (confirmed by its perfor-
mance counter profiles) and thus its performance benefits
from sharing the last level cache among its threads. Thus
when it cannot have 100% local accesses, interestingly, it
may prefer to cluster its threads to a remote node (1 shared
cache) than spreading them across sockets (2 shared caches)
for partial local accesses.

Another interesting case is cluster-docs (Fig-
ure 10), whose performance degradation for 50% local ac-
cesses comparing to 100% local accesses is quite insignif-
icant (1-2%). However, the 0% local accesses case has
a significant performance impact. This is because that
cluster-docs’ threads contend for cache space [33].
Therefore, although spreading its threads (scenario 2) in-
creases remote accesses, it also increases cache space, alle-
viating the performance degradation.

[Corun] The 2nd-4th clusters of bars in each figure
demonstrate each application’s performance in scenario 4-6

workload description metric

cluster-docs Unsupervised Bayesian clustering tool to take keywords or text
documents and “explain” them with meaningful clusters.

throughput

bigtable storage software for massive amount of data average r/w latency

search-frontend-
render

Web search frontend server, collect results from many backends
and assembles html for user.

user time (secs)

Table 1. Datacenter Applications

 1.05x

solo +bigtable +render +docs

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 10. Normalized performance of
cluster-docs running alone and running
with 3 various co-runners

 1.05x

solo +bigtable +render +docs

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 11. Normalized performance of
Bigtable

 1.05x

solo +bigtable +render +docs

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 12. Normalized performance of
Web-search frontend render

mote accesses. For example, cluster-docs has a 12%
performance degradation when all accesses are remote, as
shown by the first cluster of bars in Figure 10. However,
Bigtable (Figure 11) stands out to be a curious case,
whose performance for 100% remote accesses is better than
50% remote accesses. This may be due to the fact that
Bigtable benefits from sharing cache among its own sib-
ling threads. As reported in recent work [33] that Bigtable
has a large amount of data sharing (confirmed by its perfor-
mance counter profiles) and thus its performance benefits
from sharing the last level cache among its threads. Thus
when it cannot have 100% local accesses, interestingly, it
may prefer to cluster its threads to a remote node (1 shared
cache) than spreading them across sockets (2 shared caches)
for partial local accesses.

Another interesting case is cluster-docs (Fig-
ure 10), whose performance degradation for 50% local ac-
cesses comparing to 100% local accesses is quite insignif-
icant (1-2%). However, the 0% local accesses case has
a significant performance impact. This is because that
cluster-docs’ threads contend for cache space [33].
Therefore, although spreading its threads (scenario 2) in-
creases remote accesses, it also increases cache space, alle-
viating the performance degradation.

[Corun] The 2nd-4th clusters of bars in each figure
demonstrate each application’s performance in scenario 4-6

workload description metric

cluster-docs Unsupervised Bayesian clustering tool to take keywords or text
documents and “explain” them with meaningful clusters.

throughput

bigtable storage software for massive amount of data average r/w latency

search-frontend-
render

Web search frontend server, collect results from many backends
and assembles html for user.

user time (secs)

Table 1. Datacenter Applications

 1.05x

solo +bigtable +render +docs

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 10. Normalized performance of
cluster-docs running alone and running
with 3 various co-runners

 1.05x

solo +bigtable +render +docs

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 11. Normalized performance of
Bigtable

 1.05x

solo +bigtable +render +docs

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 12. Normalized performance of
Web-search frontend render

mote accesses. For example, cluster-docs has a 12%
performance degradation when all accesses are remote, as
shown by the first cluster of bars in Figure 10. However,
Bigtable (Figure 11) stands out to be a curious case,
whose performance for 100% remote accesses is better than
50% remote accesses. This may be due to the fact that
Bigtable benefits from sharing cache among its own sib-
ling threads. As reported in recent work [33] that Bigtable
has a large amount of data sharing (confirmed by its perfor-
mance counter profiles) and thus its performance benefits
from sharing the last level cache among its threads. Thus
when it cannot have 100% local accesses, interestingly, it
may prefer to cluster its threads to a remote node (1 shared
cache) than spreading them across sockets (2 shared caches)
for partial local accesses.

Another interesting case is cluster-docs (Fig-
ure 10), whose performance degradation for 50% local ac-
cesses comparing to 100% local accesses is quite insignif-
icant (1-2%). However, the 0% local accesses case has
a significant performance impact. This is because that
cluster-docs’ threads contend for cache space [33].
Therefore, although spreading its threads (scenario 2) in-
creases remote accesses, it also increases cache space, alle-
viating the performance degradation.

[Corun] The 2nd-4th clusters of bars in each figure
demonstrate each application’s performance in scenario 4-6

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Cluster
-docs

Bigtable

Websearch
Frontend

Corun

Corun:

websearch: depends
on the corunner, the
performance ranking
changes

tradeoffs b/t NUMA
and cache sharing/
contention

1oo %

workload description metric

cluster-docs Unsupervised Bayesian clustering tool to take keywords or text
documents and “explain” them with meaningful clusters.

throughput

bigtable storage software for massive amount of data average r/w latency

search-frontend-
render

Web search frontend server, collect results from many backends
and assembles html for user.

user time (secs)

Table 1. Datacenter Applications

 1.05x

solo +bigtable +render +docs

No
rm

ali
ze

d P
erf

orm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 10. Normalized performance of
cluster-docs running alone and running
with 3 various co-runners

 1.05x

solo +bigtable +render +docs

No
rm

ali
ze

d P
erf

orm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 11. Normalized performance of
Bigtable

 1.05x

solo +bigtable +render +docs

No
rm

ali
ze

d P
erf

orm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 12. Normalized performance of
Web-search frontend render

mote accesses. For example, cluster-docs has a 12%
performance degradation when all accesses are remote, as
shown by the first cluster of bars in Figure 10. However,
Bigtable (Figure 11) stands out to be a curious case,
whose performance for 100% remote accesses is better than
50% remote accesses. This may be due to the fact that
Bigtable benefits from sharing cache among its own sib-
ling threads. As reported in recent work [33] that Bigtable
has a large amount of data sharing (confirmed by its perfor-
mance counter profiles) and thus its performance benefits
from sharing the last level cache among its threads. Thus
when it cannot have 100% local accesses, interestingly, it
may prefer to cluster its threads to a remote node (1 shared
cache) than spreading them across sockets (2 shared caches)
for partial local accesses.

Another interesting case is cluster-docs (Fig-
ure 10), whose performance degradation for 50% local ac-
cesses comparing to 100% local accesses is quite insignif-
icant (1-2%). However, the 0% local accesses case has
a significant performance impact. This is because that
cluster-docs’ threads contend for cache space [33].
Therefore, although spreading its threads (scenario 2) in-
creases remote accesses, it also increases cache space, alle-
viating the performance degradation.

[Corun] The 2nd-4th clusters of bars in each figure
demonstrate each application’s performance in scenario 4-6

50 %

workload description metric

cluster-docs Unsupervised Bayesian clustering tool to take keywords or text
documents and “explain” them with meaningful clusters.

throughput

bigtable storage software for massive amount of data average r/w latency

search-frontend-
render

Web search frontend server, collect results from many backends
and assembles html for user.

user time (secs)

Table 1. Datacenter Applications

 1.05x

solo +bigtable +render +docs

No
rm

ali
ze

d P
erf

orm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 10. Normalized performance of
cluster-docs running alone and running
with 3 various co-runners

 1.05x

solo +bigtable +render +docs

No
rm

ali
ze

d P
erf

orm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 11. Normalized performance of
Bigtable

 1.05x

solo +bigtable +render +docs

No
rm

ali
ze

d P
erf

orm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 12. Normalized performance of
Web-search frontend render

mote accesses. For example, cluster-docs has a 12%
performance degradation when all accesses are remote, as
shown by the first cluster of bars in Figure 10. However,
Bigtable (Figure 11) stands out to be a curious case,
whose performance for 100% remote accesses is better than
50% remote accesses. This may be due to the fact that
Bigtable benefits from sharing cache among its own sib-
ling threads. As reported in recent work [33] that Bigtable
has a large amount of data sharing (confirmed by its perfor-
mance counter profiles) and thus its performance benefits
from sharing the last level cache among its threads. Thus
when it cannot have 100% local accesses, interestingly, it
may prefer to cluster its threads to a remote node (1 shared
cache) than spreading them across sockets (2 shared caches)
for partial local accesses.

Another interesting case is cluster-docs (Fig-
ure 10), whose performance degradation for 50% local ac-
cesses comparing to 100% local accesses is quite insignif-
icant (1-2%). However, the 0% local accesses case has
a significant performance impact. This is because that
cluster-docs’ threads contend for cache space [33].
Therefore, although spreading its threads (scenario 2) in-
creases remote accesses, it also increases cache space, alle-
viating the performance degradation.

[Corun] The 2nd-4th clusters of bars in each figure
demonstrate each application’s performance in scenario 4-6

0%

X X X XX X

XX X XX X

X X X XX X

M-X

M-X

M-X

local access:

Monday, March 4, 13

Solo:

bigtable 0% local
access outperform
50% local access

workload description metric

cluster-docs Unsupervised Bayesian clustering tool to take keywords or text
documents and “explain” them with meaningful clusters.

throughput

bigtable storage software for massive amount of data average r/w latency

search-frontend-
render

Web search frontend server, collect results from many backends
and assembles html for user.

user time (secs)

Table 1. Datacenter Applications

 1.05x

solo +bigtable +render +docs

N
o
rm

al
iz

ed
 P

er
fo

rm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 10. Normalized performance of
cluster-docs running alone and running
with 3 various co-runners

 1.05x

solo +bigtable +render +docs

N
o
rm

al
iz

ed
 P

er
fo

rm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 11. Normalized performance of
Bigtable

 1.05x

solo +bigtable +render +docs

N
o
rm

al
iz

ed
 P

er
fo

rm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 12. Normalized performance of
Web-search frontend render

mote accesses. For example, cluster-docs has a 12%
performance degradation when all accesses are remote, as
shown by the first cluster of bars in Figure 10. However,
Bigtable (Figure 11) stands out to be a curious case,
whose performance for 100% remote accesses is better than
50% remote accesses. This may be due to the fact that
Bigtable benefits from sharing cache among its own sib-
ling threads. As reported in recent work [33] that Bigtable
has a large amount of data sharing (confirmed by its perfor-
mance counter profiles) and thus its performance benefits
from sharing the last level cache among its threads. Thus
when it cannot have 100% local accesses, interestingly, it
may prefer to cluster its threads to a remote node (1 shared
cache) than spreading them across sockets (2 shared caches)
for partial local accesses.

Another interesting case is cluster-docs (Fig-
ure 10), whose performance degradation for 50% local ac-
cesses comparing to 100% local accesses is quite insignif-
icant (1-2%). However, the 0% local accesses case has
a significant performance impact. This is because that
cluster-docs’ threads contend for cache space [33].
Therefore, although spreading its threads (scenario 2) in-
creases remote accesses, it also increases cache space, alle-
viating the performance degradation.

[Corun] The 2nd-4th clusters of bars in each figure
demonstrate each application’s performance in scenario 4-6

workload description metric

cluster-docs Unsupervised Bayesian clustering tool to take keywords or text
documents and “explain” them with meaningful clusters.

throughput

bigtable storage software for massive amount of data average r/w latency

search-frontend-
render

Web search frontend server, collect results from many backends
and assembles html for user.

user time (secs)

Table 1. Datacenter Applications

 1.05x

solo +bigtable +render +docs

N
o
rm

al
iz

ed
 P

er
fo

rm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 10. Normalized performance of
cluster-docs running alone and running
with 3 various co-runners

 1.05x

solo +bigtable +render +docs

N
o
rm

al
iz

ed
 P

er
fo

rm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 11. Normalized performance of
Bigtable

 1.05x

solo +bigtable +render +docs

N
o
rm

al
iz

ed
 P

er
fo

rm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 12. Normalized performance of
Web-search frontend render

mote accesses. For example, cluster-docs has a 12%
performance degradation when all accesses are remote, as
shown by the first cluster of bars in Figure 10. However,
Bigtable (Figure 11) stands out to be a curious case,
whose performance for 100% remote accesses is better than
50% remote accesses. This may be due to the fact that
Bigtable benefits from sharing cache among its own sib-
ling threads. As reported in recent work [33] that Bigtable
has a large amount of data sharing (confirmed by its perfor-
mance counter profiles) and thus its performance benefits
from sharing the last level cache among its threads. Thus
when it cannot have 100% local accesses, interestingly, it
may prefer to cluster its threads to a remote node (1 shared
cache) than spreading them across sockets (2 shared caches)
for partial local accesses.

Another interesting case is cluster-docs (Fig-
ure 10), whose performance degradation for 50% local ac-
cesses comparing to 100% local accesses is quite insignif-
icant (1-2%). However, the 0% local accesses case has
a significant performance impact. This is because that
cluster-docs’ threads contend for cache space [33].
Therefore, although spreading its threads (scenario 2) in-
creases remote accesses, it also increases cache space, alle-
viating the performance degradation.

[Corun] The 2nd-4th clusters of bars in each figure
demonstrate each application’s performance in scenario 4-6

workload description metric

cluster-docs Unsupervised Bayesian clustering tool to take keywords or text
documents and “explain” them with meaningful clusters.

throughput

bigtable storage software for massive amount of data average r/w latency

search-frontend-
render

Web search frontend server, collect results from many backends
and assembles html for user.

user time (secs)

Table 1. Datacenter Applications

 1.05x

solo +bigtable +render +docs

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 10. Normalized performance of
cluster-docs running alone and running
with 3 various co-runners

 1.05x

solo +bigtable +render +docs

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 11. Normalized performance of
Bigtable

 1.05x

solo +bigtable +render +docs

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 12. Normalized performance of
Web-search frontend render

mote accesses. For example, cluster-docs has a 12%
performance degradation when all accesses are remote, as
shown by the first cluster of bars in Figure 10. However,
Bigtable (Figure 11) stands out to be a curious case,
whose performance for 100% remote accesses is better than
50% remote accesses. This may be due to the fact that
Bigtable benefits from sharing cache among its own sib-
ling threads. As reported in recent work [33] that Bigtable
has a large amount of data sharing (confirmed by its perfor-
mance counter profiles) and thus its performance benefits
from sharing the last level cache among its threads. Thus
when it cannot have 100% local accesses, interestingly, it
may prefer to cluster its threads to a remote node (1 shared
cache) than spreading them across sockets (2 shared caches)
for partial local accesses.

Another interesting case is cluster-docs (Fig-
ure 10), whose performance degradation for 50% local ac-
cesses comparing to 100% local accesses is quite insignif-
icant (1-2%). However, the 0% local accesses case has
a significant performance impact. This is because that
cluster-docs’ threads contend for cache space [33].
Therefore, although spreading its threads (scenario 2) in-
creases remote accesses, it also increases cache space, alle-
viating the performance degradation.

[Corun] The 2nd-4th clusters of bars in each figure
demonstrate each application’s performance in scenario 4-6

workload description metric

cluster-docs Unsupervised Bayesian clustering tool to take keywords or text
documents and “explain” them with meaningful clusters.

throughput

bigtable storage software for massive amount of data average r/w latency

search-frontend-
render

Web search frontend server, collect results from many backends
and assembles html for user.

user time (secs)

Table 1. Datacenter Applications

 1.05x

solo +bigtable +render +docs

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 10. Normalized performance of
cluster-docs running alone and running
with 3 various co-runners

 1.05x

solo +bigtable +render +docs

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 11. Normalized performance of
Bigtable

 1.05x

solo +bigtable +render +docs

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 12. Normalized performance of
Web-search frontend render

mote accesses. For example, cluster-docs has a 12%
performance degradation when all accesses are remote, as
shown by the first cluster of bars in Figure 10. However,
Bigtable (Figure 11) stands out to be a curious case,
whose performance for 100% remote accesses is better than
50% remote accesses. This may be due to the fact that
Bigtable benefits from sharing cache among its own sib-
ling threads. As reported in recent work [33] that Bigtable
has a large amount of data sharing (confirmed by its perfor-
mance counter profiles) and thus its performance benefits
from sharing the last level cache among its threads. Thus
when it cannot have 100% local accesses, interestingly, it
may prefer to cluster its threads to a remote node (1 shared
cache) than spreading them across sockets (2 shared caches)
for partial local accesses.

Another interesting case is cluster-docs (Fig-
ure 10), whose performance degradation for 50% local ac-
cesses comparing to 100% local accesses is quite insignif-
icant (1-2%). However, the 0% local accesses case has
a significant performance impact. This is because that
cluster-docs’ threads contend for cache space [33].
Therefore, although spreading its threads (scenario 2) in-
creases remote accesses, it also increases cache space, alle-
viating the performance degradation.

[Corun] The 2nd-4th clusters of bars in each figure
demonstrate each application’s performance in scenario 4-6

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Cluster
-docs

Bigtable

Websearch
Frontend

Corun

Corun:

websearch: depends
on the corunner, the
performance ranking
changes

tradeoffs b/t NUMA
and cache sharing/
contention

varies for different
applications and
when the
application’s corun-
ner changes.

1oo %

workload description metric

cluster-docs Unsupervised Bayesian clustering tool to take keywords or text
documents and “explain” them with meaningful clusters.

throughput

bigtable storage software for massive amount of data average r/w latency

search-frontend-
render

Web search frontend server, collect results from many backends
and assembles html for user.

user time (secs)

Table 1. Datacenter Applications

 1.05x

solo +bigtable +render +docs

No
rm

ali
ze

d P
erf

orm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 10. Normalized performance of
cluster-docs running alone and running
with 3 various co-runners

 1.05x

solo +bigtable +render +docs

No
rm

ali
ze

d P
erf

orm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 11. Normalized performance of
Bigtable

 1.05x

solo +bigtable +render +docs

No
rm

ali
ze

d P
erf

orm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 12. Normalized performance of
Web-search frontend render

mote accesses. For example, cluster-docs has a 12%
performance degradation when all accesses are remote, as
shown by the first cluster of bars in Figure 10. However,
Bigtable (Figure 11) stands out to be a curious case,
whose performance for 100% remote accesses is better than
50% remote accesses. This may be due to the fact that
Bigtable benefits from sharing cache among its own sib-
ling threads. As reported in recent work [33] that Bigtable
has a large amount of data sharing (confirmed by its perfor-
mance counter profiles) and thus its performance benefits
from sharing the last level cache among its threads. Thus
when it cannot have 100% local accesses, interestingly, it
may prefer to cluster its threads to a remote node (1 shared
cache) than spreading them across sockets (2 shared caches)
for partial local accesses.

Another interesting case is cluster-docs (Fig-
ure 10), whose performance degradation for 50% local ac-
cesses comparing to 100% local accesses is quite insignif-
icant (1-2%). However, the 0% local accesses case has
a significant performance impact. This is because that
cluster-docs’ threads contend for cache space [33].
Therefore, although spreading its threads (scenario 2) in-
creases remote accesses, it also increases cache space, alle-
viating the performance degradation.

[Corun] The 2nd-4th clusters of bars in each figure
demonstrate each application’s performance in scenario 4-6

50 %

workload description metric

cluster-docs Unsupervised Bayesian clustering tool to take keywords or text
documents and “explain” them with meaningful clusters.

throughput

bigtable storage software for massive amount of data average r/w latency

search-frontend-
render

Web search frontend server, collect results from many backends
and assembles html for user.

user time (secs)

Table 1. Datacenter Applications

 1.05x

solo +bigtable +render +docs

No
rm

ali
ze

d P
erf

orm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 10. Normalized performance of
cluster-docs running alone and running
with 3 various co-runners

 1.05x

solo +bigtable +render +docs

No
rm

ali
ze

d P
erf

orm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 11. Normalized performance of
Bigtable

 1.05x

solo +bigtable +render +docs

No
rm

ali
ze

d P
erf

orm
an

ce

Scenario 1 or 4: 100% local
Scenario 2 or 5: 50% local
Scenario 3 or 6: 0% local

 0.8x

 0.85x

 0.9x

 0.95x

 1x

Figure 12. Normalized performance of
Web-search frontend render

mote accesses. For example, cluster-docs has a 12%
performance degradation when all accesses are remote, as
shown by the first cluster of bars in Figure 10. However,
Bigtable (Figure 11) stands out to be a curious case,
whose performance for 100% remote accesses is better than
50% remote accesses. This may be due to the fact that
Bigtable benefits from sharing cache among its own sib-
ling threads. As reported in recent work [33] that Bigtable
has a large amount of data sharing (confirmed by its perfor-
mance counter profiles) and thus its performance benefits
from sharing the last level cache among its threads. Thus
when it cannot have 100% local accesses, interestingly, it
may prefer to cluster its threads to a remote node (1 shared
cache) than spreading them across sockets (2 shared caches)
for partial local accesses.

Another interesting case is cluster-docs (Fig-
ure 10), whose performance degradation for 50% local ac-
cesses comparing to 100% local accesses is quite insignif-
icant (1-2%). However, the 0% local accesses case has
a significant performance impact. This is because that
cluster-docs’ threads contend for cache space [33].
Therefore, although spreading its threads (scenario 2) in-
creases remote accesses, it also increases cache space, alle-
viating the performance degradation.

[Corun] The 2nd-4th clusters of bars in each figure
demonstrate each application’s performance in scenario 4-6

0%

X X X XX X

XX X XX X

X X X XX X

M-X

M-X

M-X

local access:

Monday, March 4, 13

Conclusion
Combine production study and controlled study

Production study

novel NUMA score

lightweight monitoring of large scale systems

careful correlation and analysis of noisy data.

conclusion: performance impact of NUMA is significant for large scale web-
service applications

Controlled study

Conclusion: some running scenarios with more remote memory accesses may
outperform scenarios with more local accesses

This tradeoff b/t NUMA and cache sharing/contention varies for different
applications and when the application’s corunner changes.

21

Monday, March 4, 13

Monday, March 4, 13

1% performance improvement means millions

Failure to tease out individual micro-architectural
properties -> difficult to quantify the performance
impact and potential optimization benefit

Leave performance opportunity on the table

23

Monday, March 4, 13

