
Bubble-Flux: Precise Online QoS Management for
Increased Utilization in Warehouse Scale Computers

Hailong Yang∗ Alex Breslow Jason Mars Lingjia Tang
University of California, San Diego

{h5yang, abreslow, mars, lingjia}@cs.ucsd.edu

ABSTRACT

Ensuring the quality of service (QoS) for latency-sensitive
applications while allowing co-locations of multiple appli-
cations on servers is critical for improving server utiliza-
tion and reducing cost in modern warehouse-scale computers
(WSCs). Recent work relies on static profiling to precisely
predict the QoS degradation that results from performance
interference among co-running applications to increase the
number of “safe” co-locations. However, these static profil-
ing techniques have several critical limitations: 1) a priori
knowledge of all workloads is required for profiling, 2) it is
difficult for the prediction to capture or adapt to phase or
load changes of applications, and 3) the prediction technique
is limited to only two co-running applications.

To address all of these limitations, we present Bubble-
Flux, an integrated dynamic interference measurement and
online QoS management mechanism to provide accurate QoS
control and maximize server utilization. Bubble-Flux uses a
Dynamic Bubble to probe servers in real time to measure
the instantaneous pressure on the shared hardware resources
and precisely predict how the QoS of a latency-sensitive job
will be affected by potential co-runners. Once “safe” batch
jobs are selected and mapped to a server, Bubble-Flux uses
an Online Flux Engine to continuously monitor the QoS
of the latency-sensitive application and control the execu-
tion of batch jobs to adapt to dynamic input, phase, and
load changes to deliver satisfactory QoS. Batch applications
remain in a state of flux throughout execution. Our results
show that the utilization improvement achieved by Bubble-
Flux is up to 2.2x better than the prior static approach.

1. INTRODUCTION
Improving utilization in modern warehouse-scale comput-

ers (WSCs) has been identified as a critical design goal for
reducing the total cost of ownership (TCO) for web service
providers [5]. However, the over-provisioning of compute re-

∗Hailong was a visiting student at UCSD from Beihang Uni-
versity at the time of this work.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’13, Tel-Aviv, Israel.
Copyright 2013 ACM 978-1-4503-2079-5/13/06 ...$15.00.

sources in WSCs to ensure high quality of service (QoS) of
latency-sensitive applications, such as Web-seach, continues
to be prohibitive in realizing high utilization.

Arguably the most challenging obstacle to improving uti-
lization in modern WSCs is in providing precise QoS pre-
diction and management for latency-sensitive applications
when co-running with other applications. The lack of soft-
ware and hardware mechanisms to dynamically and instan-
taneously detect precisely how jobs interfere when co-located
on a single server has resulted in WSC operators simply dis-
allowing co-location for user-facing latency sensitive appli-
cations. This challenge is a major contributor to low utiliza-
tion in WSCs with average utilization typically under 50%,
even at large companies such as Microsoft and Google [6].
In fact, a recent article from Wired reported that Mozilla’s
and VMWare’s data centers operate at 6% utilization and
at 20 to 30% utilization respectively [27].

Recent work [24, 25] has proposed a static profiling tech-
nique to precisely predict the QoS interference and degra-
dation for latency-sensitive applications when co-located.
Based on the prediction, the cluster scheduler can identify
batch applications that provide “safe” co-locations without
causing significant QoS degradation, effectively improving
server utilization while enforcing QoS requirements. How-
ever, this technique has several limitations that critically
affect its generality and effectiveness. These include:

1. [A Priori Knowledge Required] Static techniques
require a priori knowledge about all workloads and the
profiling for each type of workload. This requirement
limits both the types of workloads for which such a
technique can be applied and, more broadly, the type
of datacenters that can adopt the approach.

2. [Inability to Adapt] Static profiling and prediction
techniques cannot capture nor adapt to application
phase, input, and load changes during execution and
across executions.

3. [Limited Co-location Scalability] Prior techniques
are limited to predicting interference between two co-
located applications and cannot scale to three or more.
This limitation is particularly problematic consider-
ing the increasing core counts in newer generations of
servers.

These challenges result from the requirement that a static
approach be overly conservative in its prediction. As de-
scribed in prior work [24,25], static techniques produce con-
servative predictions by profiling under peak load conditions,

which, as we show in this work, significantly limits the po-
tential utilization improvement especially during low-load
periods for latency-sensitive applications. In addition, the
lack of online adaptability of the static approaches may lead
to QoS violations due to dynamic behaviors unseen during
the profiling period.

In this work, we present Bubble-Flux, a holistic runtime
approach that provides prediction-based “safe” co-location
identification and online precise QoS management to deliver
satisfactory QoS and maximize utilization. Bubble-Flux ad-
dresses each of the three limitations described above. By
using novel mechanisms for instantaneous, precise interfer-
ence prediction and runtime QoS enforcement, Bubble-Flux
requires 1) no a priori knowledge of applications, 2) can
adapt to phase, input, and load changes in both the latency-
sensitive and batch applications, and 3) scales beyond pair-
wise co-locations to co-locations of three or more applica-
tions.

Bubble-Flux consists of two main components: the Dy-
namic Bubble and Online Flux Engine. Instead of profiling
latency-sensitive applications in a controlled environment,
a Dynamic Bubble is used to probe each server to measure
shared resource pressure in real-time and quantify the in-
stantaneous QoS sensitivity of the latency-sensitive applica-
tion online with negligible overhead. The cluster scheduler
performs this probe before scheduling, and by doing so, is
able to capture various factors in a production environment
that may have a significant impact on the QoS sensitivity
of latency-sensitive applications. These factors include the
current load for the application and the load of batch ap-
plications that are co-running on the server, among others.
This in turn facilitates the cluster scheduler to identify more
“safe” co-loation opportunities. For example, during a low
load period when the latency-sensitive application is not as
vulnerable to interference, more co-location opportunities
can be identified.

When batch applications are launched and co-located with
latency-sensitive applications they remain in a state of flux.
The Online Flux Engine employs a dynamic phase-in/phase-
out (PiPo) mechanism to monitor the QoS of the latency-
sensitive applications and adaptively adjust the execution
rate of batch applications to meet the specified QoS thresh-
old. With this Flux Engine in place, the batch applications
can respond to execution phase changes, input changes, and
load variations, guaranteeing the QoS of latency-sensitive
applications while maximizing machine utilization. PiPo can
scale up beyond pairwise co-locations and manage multiple
batch applications. In addition, PiPo is also particularly
useful for managing new applications that have not been
profiled before by gradually phasing in these applications to
control their QoS interference. This capability to manage
interference without a priori knowledge is critical for both
the general adoption of Bubble-Flux and to exploit a large
portion of co-location opportunities found in typical produc-
tion environments.

Together, the Dynamic Bubble and Flux Engine com-
prise Bubble-Flux, a holistic, scalable, and adaptive solu-
tion for precisely managing QoS and maximizing utilization
in WSCs. The specific contributions of this work are as
follows:

• We design the Dynamic Bubble, a novel technique to
accurately measure the instantaneous QoS sensitiv-
ity of a latency-sensitive application online with lit-

tle overhead. The Dynamic Bubble enables the clus-
ter scheduler to, in real-time, better identify “safe co-
locations” to improve utilization.

• We design the Online Flux Engine, a lightweight mech-
anism to precisely manage the QoS of latency-sensitive
applications in the presence of co-locations and ag-
gressively improve machine utilization while guaran-
teeing QoS. The Flux Engine uses a PiPo mechanism
to control and dynamically adjusts the execution rate
of batch applications to enforce QoS guarantees. The
Flux Engine does not require profiling and is adaptive
to phase, input, and load changes.

• We conduct a comprehensive evaluation of Bubble-
Flux using open source WSC applications as well as
benchmark applications on real server-grade hardware,
demonstrating its effectiveness and advantages over
the state-of-art static Bubble-Up approach.

Our results show that the utilization improvement achieved
by Bubble-Flux is up to 2.2x better than the state-of-practice
Bubble-Up. In addition, Bubble-Flux can achieve significant
utilization in cases where Bubble-Up fails to utilize any idle
cores.

Next, in Section 2 we discuss the background and moti-
vation of our work. We then present an overview of Bubble-
Flux in Section 3. Section 4 discusses the design of the Dy-
namic Bubble. Section 5 presents the design of the Online
Flux Engine. We present an in-depth evaluation of Bubble-
Flux including comparative analysis with the prior Bubble-
Up technique in Section 6. We present related work in Sec-
tion 7, and finally, we conclude in Section 8.

2. BACKGROUND AND MOTIVATION
In this section, we briefly describe the QoS and utilization

challenges in modern WSCs. We then discuss the limitations
of the-state-of-art static approach for QoS prediction and
utilization improvement.

2.1 QoS and Utilization in WSC
Each web-service in modern warehouse scale computers is

composed of one to hundreds of application tasks. A task is
composed of an application binary, associated data, and a
configuration file that specifies the machine level resources
required, including the number of cores and amount of mem-
ory. Task placement is conducted by a cluster-level manager
that is responsible for a number of servers. Based on the re-
source requirement specified by each task, the cluster man-
ager uses an algorithm similar to bin-packing to place each
task in a cluster of machines [30].

Multicore servers have become widely adopted in datacen-
ters. The cluster manager consolidates multiple disparate
applications on a single server to improve the machine uti-
lization. However, due to contention for the shared memory
resources such as the last level cache and memory band-
width, when multiple applications are co-located, significant
performance and quality of service (QoS) degradation may
occur. User-facing applications such as web search, maps,
email and other Internet services are latency-sensitive, and
need to provide satisfactory QoS. To avoid the threat that
shared resource contention poses to application QoS, dat-
acenter operators and system designers typically disallow
co-locations of latency-sensitive jobs with other batch jobs.

Batch
Application

Contentiousness
Profiler

 (Reporter)

Latency
Sensitive

Application

Sensitivity
Profiler
(Bubble)

Q
oS

1.0

0.8

Bubble Score2

Bubble Score

Accurate QoS
Prediction

Step 1

Step 2

Step 3

2

Figure 1: Bubble-Up Methodology

This unnecessary over-provisioning of compute resources re-
duces the overall utilization of WSCs, recently reported to
be below 30% on average [28], which translates to low energy
efficiency and high total cost of ownership.

2.2 Static Approach and Its Limitations
To address the QoS and utilization challenge, prior work

presents Bubble-Up [24, 25], a characterization and profil-
ing methodology to precisely predict the QoS interference
between pairwise application co-locations. Using the pre-
cise QoS prediction by Bubble-Up, the cluster scheduler can
identify “safe” co-locations, essentially trading a very small
QoS degradation for a significant increase in utilization.

2.2.1 Bubble-Up Methodology

Figure 1 illustrates the Bubble-Up methodology. As shown
in the figure, Bubble-Up is composed of three primary steps.
In the first step, a latency sensitive application is profiled
using a memory subsystem stress test called the “bubble”.
The bubble iteratively increases the amount of pressure ap-
plied to the memory subsystem with a particular focus on
last level cache and memory bandwidth. By measuring the
amount of degradation an application suffers at the varying
levels of pressure, Bubble-Up generates a QoS sensitivity
curve for the application. In the second step, a batch appli-
cation is profiled using a reporter, whose sensitivity curve is
known. By tracing the degradation caused to the reporter to
an equivalent bubble size, the system characterizes the con-
tentiousness of each batch application, identifying its bubble
score. Finally, by mapping the batch application’s bubble
score to the sensitivity curve of each latency sensitive ap-
plication, Bubble-Up predicts the QoS performance of the
latency-sensitive application when co-located. The cluster
manager then can rely on the precise prediction to identify
batch applications that are safe to run with the latency sen-
sitive application without causing much QoS interference.

2.2.2 Limitations of Bubble-Up

Bubble-Up is shown to be effective at generating precise
QoS predictions and significantly improving utilization in
WSCs. However, there are several primary limitations of
the work, including requiring a priori knowledge of appli-
cation behavior, the lack of adaptability to changes in ap-
plication dynamic behaviors, and being limited to pairwise
co-locations. Figure 2 illustrates a number of scenarios that
expose these limitations.

LS B

B BB B

?

Server

2 1 5

Job Queue

A
LS

Server

B

C

D E

Sensitivity
Curve

Sensitivity
Curve

Sensitivity
Curve

La
te

nc
y

Se
ns

iti
ve

 A
pp

lic
at

io
n

Lo
ad

Figure 2: Limitations of Bubble-Up Methodology

Limitation 1. Requiring a priori knowledge.
Bubble-Up assumes a priori knowledge of applications.

When a batch application to be scheduled has not been seen
or profiled before, such as shown in Scenario E of Figure 2,
Bubble-Up will not be able to predict the interference it
might cause to latency-sensitive applications, and thus no
co-location can happen with a precise QoS guarantee.

Limitation 2. Lack of adaptability.
A critical limitation when using the static Bubble-Up ap-

proach in a production datacenter is its lack of adaptivity
to the dynamic behaviors of applications. Lack of adaptabil-
ity significantly limits the potential utilization improvement
opportunities. In addition, it also risks QoS violations when
the application behavior is unexpected and differs from its
profiled behavior.

An example of dynamic behaviors includes load fluctu-
ations of the latency sensitive applications. Many latency
sensitive applications such as Web-search, social networking
or email services experience significant load fluctuations [8]
typically due to the user behavior patterns. For example,
email service often experiences fairly high load at 8AM on
Mondays but significantly lower load at 3AM. Figure 2 il-
lustrates three example scenarios A, B and C with various
load levels. Since Bubble-Up is static, to create conser-
vative QoS predictions, profiling must occur at peak load
(Scenario A). Bubble-Up is quite effective at producing near
optimal utilization while guaranteeing target QoS when the
load remains at the peak level. However, when system ex-
periences low load (Scenario B), the latency sensitive appli-
cation may become less vulnerable to the interference, as
illustrated by the rather flat real-time instantaneous sensi-
tivity curve shown at Scenario B. When we use the sensitiv-
ity curve generated at Scenario A to make QoS prediction
at B, our prediction becomes overly conservative. Because
the low load period can comprise a significant portion of
time [29], the lack of adaptability to exploit the low load
co-location opportunities significantly limits the potential
utilization improvement. On the other hand, when there is
an unexpected load spike such as Scenario C, the sensitiv-
ity of latency-sensitive applications may increase. By using
the sensitivity curve generated from A for QoS prediction

Figure 3: Bubble-Flux Overview

at C, we risk severely violating the quality of service of that
latency sensitive application for a prolonged period.

In addition to load fluctuations, input and phase changes
for both latency-sensitive and batch applications may al-
ter the latency-sensitive application’s QoS sensitivity or the
batch application’s pressure score, effectively skewing Bubble-
Up’s prediction.

Limitation 3. Pairwise limitation.
Another key limitation of Bubble-Up is that the predic-

tion is limited to addressing pairwise co-locations. When we
have already co-located a batch application with our latency-
sensitive application, such as in Scenario D, Bubble-Up can-
not predict how adding additional batch applications would
affect the QoS. As the number of cores increase with every
hardware generation, being able to co-locate more than just
two applications on a single server becomes more important
in WSCs [18].

The combination of the a-priori requirement, the lack of
adaptability, and the pairwise limitation significantly affect
the applicability of Bubble-Up. In this paper, we argue that
a dynamic approach is necessary to address these limita-
tions by capturing real-time QoS sensitivity and precisely
managing QoS online.

3. BUBBLE-FLUX OVERVIEW
In this section, we describe the Bubble-Flux runtime sys-

tem. Figure 3 presents the overview of the Bubble-Flux de-
sign. The Bubble-Flux Runtime is a user-level daemon that
runs on each server. It is composed of two main components:
the Dynamic Bubble and the Online Flux Engine.

[Dynamic Bubble] The primary objective of the Dy-
namic Bubble is to conduct online lightweight characteri-
zation of the latency sensitive application. Based on the
instantaneous QoS sensitivity of the application, it precisely
predicts the potential QoS interference due to co-location
and thus facilitates the identification of “safe” co-locations
to improve utilization. To achieve this, the Dynamic Bub-
ble engine spawns a memory bubble when needed (i.e., a
bubble probe), incrementally dialing up its pressure on the
memory subsystem and measuring how various levels of pres-
sure affect the QoS of the latency sensitive application. To
minimize the characterization overhead, the Dynamic Bub-
ble runs for a short burst of time, spending a few seconds
at each pressure level. The Flux Engine is used to limit

the performance interference generated by the bubble it-
self while allowing the bubble probe to generate accurate
sensitivity curves (described in detail in Section 4). When
the cluster scheduler needs to schedule batch applications,
it probes the server with a Dynamic Bubble, retrieving the
instantaneous QoS sensitivity curve of the latency-sensitive
application running on that server. The sensitivity curve is
then used for precise QoS interference prediction, which is
used by the scheduler to map batch applications accordingly.

[Online Flux Engine] The Flux Engine uses a phase-
in/phase-out (PiPo) mechanism to dynamically enforce ap-
plication QoS requirements. PiPo leverages lightweight on-
line QoS monitoring and precise QoS management to adap-
tively control the execution of batch applications. As dis-
cussed earlier, load fluctuations in addition to other sources
of variability can render a previously safe co-location un-
safe. In such circumstances, the Flux Engine works to guar-
antee the QoS of the latency sensitive application. When
a QoS violation is detected by the monitoring component
of the Flux Engine, PiPo phases out the batch application
by rapidly pausing the execution such that satisfactory QoS
is preserved. By alternating between resuming batch appli-
cations (phasing in) and pausing the applications (phasing
out), PiPo balances the tradeoffs between the QoS of the
latency-sensitive application and the utilization gained by
batch applications. Adaptively adjusting the ratio between
phase-in and phase-out based on QoS monitoring, PiPo can
reach the right level of throttling down to achieve precise
QoS guarantees while significantly improving utilization. In
the case where we have first-time batch applications for
which predictions cannot be made, The Flux Engine can
phase in the application gradually and continuously moni-
tor their QoS impact. In addition, the Flux Engine is de-
signed to manage multiple applications, scaling up beyond
pair-wise co-locations. The design of the Flux Engine is de-
scribed in detail in Section 5.
[Summary] The Dynamic Bubble and Online Flux En-

gine work in a complementary manner. The Flux Engine
provides a safety mechanism against potential QoS mispre-
dictions or unexpected dynamic behaviors that render pre-
viously correct prediction irrelevant. In addition, when no
safe co-location is available, the Flux Engine can be used
to further increase utilization by running partially phased-
out batch applications. When unknown applications are en-
countered and no prediction can be made, the Flux Engine
can improve utilization without QoS violations by a gradual
phase in. On the other hand, the QoS prediction provided by
the Dynamic Bubble facilitates more intelligent co-locations
of more compatible applications so that aggressive phase-out
can be avoided or minimized.

4. DYNAMIC BUBBLE
The Dynamic Bubble generates instantaneous QoS sensi-

tivity curves of a latency sensitive application online. We
utilize a modified version of the bubble from Bubble-Up [24,
25], a carefully designed memory stress kernel that provides
knobs to adjust the amount of pressure it applies to the
last level cache and memory bandwidth. At runtime, the
Dynamic Bubble engine inserts a bubble and gradually di-
als up its pressure. As we expand the bubble, we measure
the QoS impact it has on the latency sensitive application,
generating the sensitivity curve.

Figure 4: Online Flux Engine

In contrast to the profiling environment for Bubble-Up,
the main challenge for the Dynamic Bubble is to provide ac-
curate sensitivity curve measurements with minimum run-
time overhead and interference. To minimize overhead, we
first execute the bubble for a short burst (250 ms) at each
pressure score in succession. However, due to short sam-
pling periods and the limited amount of sampling at each
pressure level, such measurement can be much noisier than
static Bubble-Up, which can afford to have a longer sampling
window due to its offline nature. Also, it is challenging to
dial up the bubble to generate a complete sensitivity curve
without violating the QoS threshold of a latency-sensitive
application. Therefore, to control the potential overhead
and to avoid the interference, our design relies on the Flux
Engine to manage the Dynamic Bubble’s execution. This
allows us to extend our sampling period to 2 seconds per
pressure score for a more stable QoS degradation measure-
ment without the risk of a very aggressive bubble violating
the QoS threshold of a latency-sensitive application. When
the Flux Engine detects a QoS degradation during the bub-
ble measurement, it uses PiPo to automatically phases out
part of the bubble execution. Phase-in/phase-out does not
affect the measurement of the QoS degradation. We use the
average difference between the latency sensitive application’s
QoS during the bubble phase-out period and its QoS during
the bubble phase-in period to estimate the QoS degradation
caused by the bubble. Using this measurement technique,
we can generate a more complete and accurate sensitivity
curve with more aggressive bubble. The details of this mea-
surement technique are described in the following section.

5. ONLINE FLUX ENGINE
The Online Flux Engine provides precise online QoS man-

agement. The Flux Engine adaptively controls the execu-
tion of the batch applications to mitigate the interference
they cause to the co-running latency-sensitive application
to deliver satisfactory QoS while improving utilization. The
execution-control strategy is determined and adjusted dy-
namically based on the diagnosis of the amount of interfer-
ence suffered by the latency sensitive application.

The Flux Engine decides the execution control strategy
periodically throughout execution. Every decision interval

consists of a phase-in interval, where the batch applications
execute in a normal fashion, and a phase-out interval, where
batch applications’ executions are paused. We call this tech-
nique phase-in/phase-out (PiPo). PiPo adjusts the ratio be-
tween phase-in and phase-out every decision interval based
on the estimated QoS degradation that batch applications
caused to the latency-sensitive application during the most
recent period.

Figure 4 illustrates the feedback control in the Flux En-
gine and depicts two example PiPo decision intervals, i and
i+1. At the beginning of interval i, the Flux Engine decides
the phase-in/phase-out ratio for a batch application and dic-
tates its execution accordingly. During the execution, the
QoS monitor records the QoS of the latency-sensitive ap-
plication (LS) during both phase-in and phase-out intervals
of the batch application, QoSpi and QoSpo, respectively.
Because the batch application’s execution is temporarily
paused during phase-out, QoSpo of LS is close to the 100%
QoS without interference, as shown in Figure 4. The QoSpi

by comparison is relatively low due the interference when the
batch resumes execution during phase-in. As a consequence,
the average QoS during interval i is below the QoS target,
shown as the red dotted line. At the end of the interval i, the
Flux Engine acquires the monitored QoS information from
QoS monitor, and adjusts the new phase-out ratio for the
next interval, i+1. In this illustrated example, because the
average QoS for decision interval i is below a threshold, the
Flux Engine increases the phase-out ratio for interval i+ 1.
By closely monitoring QoS and adaptation, we achieve pre-
cise QoS management while maximizing utilization.

The QoS monitor uses hardware performance counters
for sampling. In this paper, we use instruction per cycle
(IPC) as a proxy for an application’s QoS. We observed that
for our applications, IPC was highly correlated with other
application-specific metrics such as average query latency.
This is consistent with the industry practice of profiling IPC
for performance monitoring and QoS estimation in the pro-
duction fleet using monitoring services such as Google Wide
Profiling [33].
Since data center applications often have threads that

spawn and die as part of their execution, such as Hadoop,
the Flux Engine contains a Thread State Monitor, which is a
status daemon that stores the process and thread IDs of the
active threads on the system. When the daemon wakes up,
it updates the table by deleting the metadata of terminated
threads and adding the TIDs of threads that have spawned
since the previous iteration of its core loop. By using this
approach, we can guarantee that we can reliably control all
latency-sensitive applications and batch application threads.
To control the execution of batch applications, PiPo sends a
SIGSTOP signal to pause batch applications and a SIGCONT

signal to resume their execution.
The core algorithm for the Flux Engine is presented in Al-

gorithm 1. As shown in Algorithm 1, the Flux Engine con-
trols the execution of batch application by pausing their exe-
cution for a short interval: phaseOut Ratioi∗phase window.
In our experimentation, we set the phase window to be 250
ms. During each decision interval, the Flux Engine calls the
update phaseIn ratio() function to decide the next inter-
val’s phase-out ratio based on the average IPCs of latency-
sensitive application when the batch applications execute
during phase-in (IPC

pi

i) and when the batch applications
sleep during phase-out(IPC

po

i). To determine the average

Algorithm 1: Flux Engine

Input: ALS a latency sensitive application,
B a set of batch applications,
QoStarget the target QoS value

1 i = 0
2 phaseIn Ratioi = 0.5
3 phaseOut Ratioi = 0.5
4 phase window = 250ms

5 while ALS.isAlive() do

6 phaseOut interval = phaseOut Ratioi ∗ phase window;
7 Phase out batch applications in B for phaseOut interval

ms;

8 IPC
pi
i

= measure ALS IPC(phaseOut interval);
/* Measure the latency sensitive application’s IPC
during the B’s Phase-Out period */

9 End Phase-out period for all batch applications;

10 phaseIn interval = phaseIn Ratioi ∗ phase window;
11 Phase in batch applications in B for phaseIn interval ms;
12 IPC

po
i

= measure ALS IPC(phaseIn interval);
13 End phase-in period for all batch applications;

14 phaseIn Ratioi+1 =

update ratio(phaseIn Ratioi, IPC
po
i

, IPC
pi
i

, QoStarget);
/* Update the Phase-in/Phase-out Ratio based on the
monitored IPC */;

15 phaseOut Ratioi+1 = 1 − phaseIn Ratioi+1;
16 i+ = 1;

17 end

QoS for a latency sensitive application during the interval i,
we utilize following equation:

QoSi =
phaseInRatioi ∗ IPC

pi

i + phaseOutRatioi ∗ IPC
po

i

IPC
po

i

(1)
Using the QoS estimation calculated by Equation 1, we up-
date the next iteration’s phase-in ratio using the following
equation:

phaseInRatio
pi

i+1 = phaseInRatio
pi

i +
QoStarget −QoSi

QoStarget

(2)
where QoStarget is the targeted threshold where the QoS
of the latency-sensitive application is deemed satisfactory.
By taking this approach, PiPo consistently anneals to the
correct QoS value and is neither overly aggressive nor overly
conservative.

6. EVALUATION
[Setup and Methodology]We conduct our experiments

on a 2.2Ghz dual-socket Intel Xeon E5-2660 (Sandy bridge)
with 8 cores and 32GB of DRAM per socket. Each core
has a 32KB L1 private instruction cache, a 32KB L1 private
data cache, a 256 KB L2 cache, and each socket has a shared
20MB L3 cache. The OS is Ubuntu with linux kernel version
3.2.0-29.

Our workloads are shown in Table 1. We use a number
of applications from CloudSuite [15] including Web-search

and Data-serving (Cassandra) to represent our latency-
sensitive applications and a mix of SPEC CPU2006 bench-
marks and CloudSuite’s Data-analytics, a Hadoop-based
benchmark, to represent our batch applications.

6.1 Effectiveness Without A Priori Knowledge
We first evaluate the effectiveness of Bubble-Flux for en-

forcing targeted QoS without prior knowledge of applica-

with Bubble−Flux targeting 98% QoS

 0.8x

 0.82x

 0.84x

 0.86x

 0.88x

 0.9x

 0.92x

 0.94x

 0.96x

 0.98x

 1x

m
il

c

lb
m

li
b
q
u
an

t

so
p
le

x

m
cf

sp
h
in

x

d
−

an
al

y
ti

cs

N
o
rm

al
iz

ed
 Q

o
S

without Bubble−Flux
with Bubble−Flux targeting 95% QoS

Figure 5: Web-search - Normalized QoS when co-
running with batch applications shown on the X-axis

 0.65x

 0.7x

 0.75x

 0.8x

 0.85x

 0.9x

 0.95x

 1x

m
il

c

lb
m

li
b
q
u
an

t

so
p
le

x

m
cf

sp
h
in

x

d
−

an
al

y
ti

cs

N
o
rm

al
iz

ed
 Q

o
S

 0.6x

without Bubble−Flux
with Bubble−Flux targeting 95% QoS
with Bubble−Flux targeting 98% QoS

Figure 6: Data-serving - Normalized QoS when co-
running with batch applications shown on the X-axis

 0.8x

 0.9x

 1x

m
il

c

lb
m

li
b
q
u
an

t

so
p
le

x

m
cf

sp
h
in

x

d
−

an
al

y
ti

cs

N
o
rm

al
iz

ed
 Q

o
S

without Bubble−Flux
with Bubble−Flux targeting 95% QoS
with Bubble−Flux targeting 98% QoS

 0.4x

 0.5x

 0.6x

 0.7x

Figure 7: Media-streaming - Normalized QoS when
co-running with batch applications shown on the X-
axis

tions or profiling. In these experiments, the Flux Engine
achieves precise QoS management, meeting 95% and 98%
normalized QoS targets with 1-2% precision. Meanwhile,
the Flux Engine also provides significant gains in utilization
even in the absence of a QoS prediction provided by the
Dynamic Bubble.

Figures 5, 6 and 7 present the normalized QoS of Web-

search, Data-serving and Media-streaming respectively,
when each of them co-runs with a series of batch applica-
tions shown on the X-axis. In this experiment, the latency-
sensitive application occupies 4 cores on an 8 core chip. Each
SPEC benchmark executes 4 instances on the remaining 4
cores. Data-analytics, which is a multi-threaded Hadoop
benchmark, runs on the remaining 4 cores as a batch ap-

Table 1: Workloads
Benchmark Set up Type

Web-search Open source Nutch v1.2 [19], Tomcat v7.0.6.23 and Faban. 30 GB
index and segments, all of index terms cached in 32 GB main memory

latency-sensitive

Data-serving NoSQL data storage software for massive amount of data. Cassandra
0.7.3 [3] with 50 GB Yahoo! Cloud Serving Benchmark (YCSB) [9]
dataset

latency-sensitive

Media-streaming Darwin Streaming Server for video content. Faban load generator [4] latency-sensitive

Data-analytics MapReduce framework to perform machine learning analysis on large-
scale dataset. We use Hadoop 0.20.2 [1], running the Bayesian classifi-
cation algorithm in the Mahout 0.4 library [2] on 1GB set of Wikipedia
pages

batch

SPEC CPU2006 milc, lbm, libquantum, soplex, mcf, sphinx batch

 100%

m
il

c

lb
m

li
b
q
u
an

t

so
p
le

x

m
cf

sp
h
in

x

d
−

an
al

y
ti

cs

G
ai

n
ed

 U
ti

li
za

ti
o
n
 with Bubble−Flux targeting 95% QoS

with Bubble−Flux targeting 98% QoS

 0%

 20%

 40%

 60%

 80%

Figure 8: Gained utilization of benchmarks (shown
on the X-axis) when co-running with Web-search us-
ing Bubble-Flux

 100%

m
il

c

lb
m

li
b
q
u
an

t

so
p
le

x

m
cf

sp
h
in

x

d
−

an
al

y
ti

cs

G
ai

n
ed

 U
ti

li
za

ti
o
n
 with Bubble−Flux targeting 95% QoS

with Bubble−Flux targeting 98% QoS

 0%

 20%

 40%

 60%

 80%

Figure 9: Gained utilization of benchmarks (shown
on the X-axis) when co-running with Data-serving

using Bubble-Flux

plication. For each cluster of bars, the first bar presents
the normalized QoS of a latency-sensitive application when
co-running with the batch application without Bubble-Flux.
The second bar shows the QoS Bubble-Flux achieves when
it targets at 95% QoS for the latency-sensitive application;
and the third bar with the 98% QoS target. These figures
demonstrate that even without a priori knowledge, Bubble-
Flux can effectively achieve the QoS target with impressive
precision. The average QoS of Web-search with the Flux
Engine is 95.8% when Flux targets 95% QoS, and 98.4%
when the target is 98%, with 1% and 0.3% standard de-
viation respectively. Similarly for both Data-serving and
Media-streaming, the achieved average QoS is around 1%
above the target with less than 1% standard deviation.

Figures 8, 9 and 10 present the utilization Bubble-Flux

 100%

m
il

c

lb
m

li
b
q
u
an

t

so
p
le

x

m
cf

sp
h
in

x

d
−

an
al

y
ti

cs

G
ai

n
ed

 U
ti

li
za

ti
o
n
 with Bubble−Flux targeting 95% QoS

with Bubble−Flux targeting 98% QoS

 0%

 20%

 40%

 60%

 80%

Figure 10: Gained utilization of benchmarks (shown
on the X-axis) when co-running with Media-streaming

using Bubble-Flux

 0.85

 0.9

 0.95

 1

 1.05

 0 50 100 150 200 250 300 350 400 450 500

N
o

rm
a

liz
e

d
 Q

o
S

time

Bubble-Flux targeting 95% QoS
Bubble-Flux targeting 98% QoS

Figure 11: Web-search’s normalized QoS when co-
located with libquantum

achieves for cores on which batch applications are executing
while guaranteeing the QoS as shown in Figures 5, 6 and
7. For example, 42% utilization when mcf is running with
Web-search while Bubble-Flux targets at 98% QoS indicates
four instances of mcf run at 42% rate on 4 cores in order to
enforce the QoS target for Web-search.
Figure 11 presents Web-search’s normalized QoS when

co-running with libquantum and the Bubble-Flux targets at
95% and 98% QoS respectively. The X-axis shows time. Fig-
ure 12 presents the corresponding utilization for libquantum
achieved by Bubble-Flux. Figures 11 and 12 demonstrate
that the Online Flux Engine consistently enforces high QoS
in the presence of libquantum’s phases. It is particularly
challenging to enforce the QoS when a latency-sensitive ap-
plication is co-running with libquantum because libquan-

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 50 100 150 200 250 300 350 400 450 500

U
ti
liz

a
ti
o

n

time

Bubble-Flux targeting 95% QoS
Bubble-Flux targeting 98% QoS

Figure 12: Gained utilization of libquantum (Web-
search is the co-running latency-sensitive applica-
tion)

tum is very contentious, generating 18% degradation without
Bubble-Flux, as shown in Figure 5. Note that prior work,
the Bubble-Up approach, would perdict the 18% degrada-
tion and determine that we could not co-locate libquan-

tum with Web-search, gaining no utilization. However, the
Flux Engine is able to yield an additional 30% utilization, as
shown in Figure 12, while still guaranteeing an average QoS
above 95%. If more stringent requirements on QoS are nec-
essary such as 98%, the Online Flux Engine can still deliver
around 10% utilization on each of the four cores (Figure 12).
As Figure 11 shows, at the 98% QoS target, the Online Flux
Engine achieves very stable QoS, almost always above 96%
of the baseline.

6.2 Capture and Adapt to Load Fluctuation
In this section, we evaluate Bubble-Flux’s effectiveness for

adapting to the load fluctuations of latency-sensitive appli-
cations and providing more utilization when the load is low.

[Adapt to Load Fluctuation] Figures 13 and 14 present
Bubble-Flux’s effectiveness when Web-search’s load fluctu-
ates. We conduct separate experiments with varying load
levels that users generate, including 520, 450, 240 and 140
queries per second (QPS). We observe that as the load drops,
the sensitivity of Web-search to contention drops drastically.
The Online Flux Engine dynamically detects this change
and is able to increase the ratio that batch applications are
phased in. As a result, in both scenarios of the 95% and
98% QoS targets, the Flux Engine approximately doubles
the utilization across all batch applications when load drops
from 520 QPS to 140 QPS. Meanwhile, the Flux Engine is
able to achieve a QoS that is consistently within 0 to 2%
above the targeted QoS of 95%, as shown in Figure 13, and
98%, as shown in Figure 14.

[Instantaneous sensitivity curve generation] In ad-
dition to the capability of adapting to load changes by ad-
justing the batch applications’ machine utilization over time,
Bubble-Flux is simultaneously capable of capturing the la-
tency sensitive application’s varying instantaneous QoS sen-
sitivity to interference at different levels of load, which ex-
poses more co-location opportunities to the cluster sched-
uler.

Figures 15, 16, and 17 presents three sensitivity curves
generated by the Dynamic Bubble when the load to Web-

search ranges from 520 QPS to 140 QPS. The Y-axis shows
the Bubble score, corresponding to bubble sizes from 5MB
to 55MB with a step size of 5MB. These sensitivity curves
demonstrate that Web-search is quite sensitive to contention

 80%

m
il

c

lb
m

li
b
q
u
an

t

so
p
le

x

U
ti

li
za

ti
o
n

520 queries/second
450 queries/second
240 queries/second
140 queries/second

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

Figure 13: Utilization achieved by Bubble-Flux
when targeting 95% QoS of Web-search with vary-
ing load levels

 80%

m
il

c

lb
m

li
b
q
u
an

t

so
p
le

x

U
ti

li
za

ti
o
n

520 queries/second
450 queries/second
240 queries/second
140 queries/second

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

Figure 14: Utilization achieved by Bubble-Flux
when targeting 98% QoS of Web-search with vary-
ing load levels

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 2 4 6 8 10

P
e

rf
o

rm
a

n
c
e

 (
n

o
rm

.)

Pressure (MB)

520 QPS

Figure 15: Sensitivity curve at 520 QPS

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 2 4 6 8 10

P
e

rf
o

rm
a

n
c
e

 (
n

o
rm

.)

Pressure (MB)

240 QPS

Figure 16: Sensitivity curve at 240 QPS

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 2 4 6 8 10

P
e

rf
o

rm
a

n
c
e

 (
n

o
rm

.)

Pressure (MB)

140 QPS

Figure 17: Sensitivity curve at 140 QPS

 0.98x

 1x

W
L

1

W
L

2

W
L

3

N
o
rm

al
iz

ed
 Q

o
S

without Bubble−Flux
with Bubble−Flux targeting 95% QoS
with Bubble−Flux targeting 98% QoS

 0.8x

 0.82x

 0.84x

 0.86x

 0.88x

 0.9x

 0.92x

 0.94x

 0.96x

Figure 18: Web-search - Normalized QoS when co-
running with workloads shown on the X-axis

when it is running at a high load (520 QPS), suffering a 20%
QoS degradation at bubble score 5 (size 25MB) and higher.
In addition, it is particularly sensitive to the bandwidth con-
tention compared to cache contention, as indicated by the
sharp QoS drop when the bubble size increases from 20 MB
(LLC size) to 25 MB. However, Web-search at 240 QPS and
140 QPS is not as sensitive to interference, as illustrated by
rather flat sensitivity curves, suffering 10% and 7% maxi-
mum degradation when the bubble size is around 45 MB.
Precisely capturing the sensitivity curve in production at
runtime exposes more co-location opportunities to further
improve the utilization. For example, at 520 QPS, a batch
application needs to have a bubble size 20MB and less to
be able to co-locate with Web-search and provide 90% QoS.
However, at 140 QPS, most batch applications can be safely
co-located with Web-search without generating beyond 10%
degradation.

6.3 Scalability beyond Pairwise
Another advantage of Bubble-Flux over the static Bubble-

Up is Bubble-Flux’s capability to scale up beyond pairwise
co-locations and provide precise QoS when multiple, differ-
ent batch applications are co-running.

Figures 18, 19 and 20 present the normalized QoS of Web-
search, Data-serving and Media-streaming when each is
running with a varying set of workloads shown in Table 2.
We observe that as before, the Online Flux Engine is partic-
ularly effective at maintaining the QoS at the target level,
although the gap between the QoS target and the achieved
QoS increases slightly, from +0.3% to 1% with four of a
single batch application (Figures 5 to 7) to +1.0% to 1.6%
with four mixed applications (Figures 18 to 20). Figures 21,
22 and 23 present the corresponding utilization. Workloads
1, 2 and 3 are composed of four of the top six most con-
tentious SPEC CPU2006 benchmarks. We observe that for
the 95% QoS threshold, the utilization gains are similar to
the average utilization gain when each benchmark of the
mixed workload co-runs with the latency-sensitive applica-
tion. However, with 98% QoS target, the utilization gains
are approximately 50% of the utilization achieved when the
workload is composed of batch applications of the same
benchmark type. This is due to the stacking of phases and
the reactive nature of the Flux Engine. If one benchmark
has a spike in contentiousness, all other benchmarks are ag-
gressively phased out. With greater variety in benchmarks,
the occurrence of such events increases.

with Bubble−Flux targeting 95% QoS
with Bubble−Flux targeting 98% QoS

 0.4x

 0.5x

 0.6x

 0.7x

 0.8x

 0.9x

 1x

W
L

1

W
L

2

W
L

3

N
o
rm

al
iz

ed
 Q

o
S

without Bubble−Flux

Figure 19: Data-serving - Normalized QoS when co-
running with workloads shown on the X-axis

with Bubble−Flux targeting 95% QoS
with Bubble−Flux targeting 98% QoS

 0.4x

 0.5x

 0.6x

 0.7x

 0.8x

 0.9x

 1x

W
L

1

W
L

2

W
L

3

N
o
rm

al
iz

ed
 Q

o
S

without Bubble−Flux

Figure 20: Media-streaming - Normalized QoS when
co-running with workloads shown on the X-axis

6.4 Applying Bubble-Flux in a WSC
In this section, we conduct experiments to apply Bubble-

Flux in real-world datacenter scenarios and compare Bubble-
Flux with the state-of-the-art Bubble-Up.

Scenario 1: The datacenter is composed of 1000 ma-
chines, 500 machines for Web-search, and the other 500
for Data-serving. Each machine is loaded with a latency-
sensitive application occupying 4 cores, leaving the rest of 4
cores idle. The batch workloads are composed of 1000 appli-
cations, each composed of 4 instances of a batch application
evenly selected from 7 types, including 6 SPEC benchmarks
and Data-analytics shown in Table 1, ready to be mapped.
The QoS threshold for each latency-sensitive application is
95% and 98%.

Scenario 2: The datacenter is composed of 1500 ma-
chines, 500 machines for Web-search, 500 for Data-serving
and 500 for Media-streaming and 1500 batch applications
evenly selected from the 7 types in Table 1.

Figures 24 and 25 illustrate the utilization gains for Sce-
narios 1 and 2 by applying Bubble-Up, the Online Flux En-
gine alone, and Bubble-Flux, targeting at 95% and 98% QoS.
For those two scenarios, all techniques have a comparably
precise QoS guarantee, above 95% and 98% respectively. We
observe that in Scenario 1, the Online Flux Engine yields sig-
nificantly higher utilization than the Bubble-Up approach,
as shown in Figure 24. At the 95% QoS target, the Flux
Engine achieves 49.66% utilization per core on average for
the 2000 (500x4) previously idle cores while Bubble-Up only
generates 27% utilization gain. At the 98% QoS threshold,
Bubble-Up’s prediction indicates that among all batch work-
loads, there are no “safe” co-locaions available, thus yielding
a 0% utilization for those 2000 cores. The Flux Engine on

Table 2: Batch Workloads
WL1 lbm, lbm, libquantum, libquantum
WL2 lbm, libquantum,soplex, milc
WL3 mcf, mcf, sphinx, soplex

 50%

 60%

 70%

 80%

W
L

1

W
L

2

W
L

3

G
a
in

e
d

 U
ti

li
z
a
ti

o
n

95% QoS
98% QoS

 0%

 10%

 20%

 30%

 40%

Figure 21: Gained utilization by
Bubble-Flux when each workload
is co-located with Web-search

 60%

 70%

 80%

W
L

1

W
L

2

W
L

3

G
a
in

e
d

 U
ti

li
z
a
ti

o
n

95% QoS
98% QoS

 0%

 10%

 20%

 30%

 40%

 50%

Figure 22: Gained utilization by
Bubble-Flux when each workload
is co-located with Data-serving

 60%

 70%

 80%

W
L

1

W
L

2

W
L

3

G
a
in

e
d

 U
ti

li
z
a
ti

o
n

95% QoS
98% QoS

 0%

 10%

 20%

 30%

 40%

 50%

Figure 23: Gain utilization by
Bubble-Flux when each workload
is co-located with Media-streaming

 50%

 60%

 70%

0
.9

5
x
Q

o
S

0
.9

8
x
Q

o
S

G
ai

n
ed

 U
ti

li
za

ti
o
n

Bubble−Up
Online Flux without the Dynamic Bubble
Bubble−Flux

 0%

 10%

 20%

 30%

 40%

Figure 24: Scenario 1. Gained Utilization achieved
by Bubble-Up, the Flux Engine and Bubble-Flux
(Web-search and Data-serving are latency-sensitive
applications).

 50%

 60%

 70%

0
.9

5
x
Q

o
S

0
.9

8
x
Q

o
S

G
ai

n
ed

 U
ti

li
za

ti
o
n

Bubble−Up
Online Flux without the Dynamic Bubble
Bubble−Flux

 0%

 10%

 20%

 30%

 40%

Figure 25: Scenario 2. Gained Utilization achieved
by Bubble-Up, the Flux Engine and Bubble-Flux
(Web-search, Data-serving and Media-streaming are
latency-sensitive applications).

the other hand, still provides 24.09% average utilization. In
addition, Bubble-Flux provides even more utilization im-
provement over the Flux Engine. At the 95% QoS thresh-
old, Bubble-Flux increases utilization by 62.6%, and 36.9%
at 98% QoS threshold.

The main advantage of Bubble-Flux over the Flux Engine
alone is the QoS prediction provided by the Dynamic Bub-
ble. With precise prediction, the cluster scheduler can map
more contentious applications to the latency-sensitive appli-
cations that generate less predicted QoS degradation. For
example, in this scenario, the cluster-scheduler based on the
Dynamic Bubble’s prediction maps top contentious bench-
marks such as lbm and libquantum to Web-search instead of
Data-serving, which is more sensitive to contention. With
intelligent mapping facilitated by the Dynamic Bubble’s QoS
prediction, utilization achieved by the Flux Engine is greatly
improved. Scenario 2 has similar results. However, the ad-
ditional improvement provided by the Dynamic Bubble over
the Flux Engine is not as obvious in this case. This is due to
the fact that Data-serving and Media-streaming have sim-
ilar sensitivity to contention and interference, so the random
mapping without the prediction can achieve similar results
as an intelligent mapping.

In conclusion, our results show that Bubble-Up has diffi-
culty co-locating moderately contentious batch applications

with latency-sensitive applications without violating their
QoS guarantees. In contrast, the utilization achieved by
Bubble-Flux is up to 2.2x better than the state-of-practice
Bubble-Up (62% vs. 27% utilization). In addition, Bubble-
Flux can achieve significant utilization when Bubble-Up fails
to utilize any idle cores (24% vs. 0% utilization). These
results demonstrate that Bubble-Flux is effective at signifi-
cantly improving utilization while precisely guaranteeing the
QoS of latency-sensitive applications.

7. RELATED WORK
There has been significant research into mitigating mem-

ory resource contention to improve the performance, fair-
ness and QoS. The closest related work is Bubble-Up [25],
which uses static methods such as profiling to predict per-
formance interference and QoS degradation to identify“safe”
colocations and improve utilization in datacenters. In this
work, we present the Dynamic Bubble mechanism to predict
performance degradation on the fly and the Flux Engine
to enforce QoS once a co-location has been selected. Be-
cause the Dynamic Bubble operates online, it can capitalize
on variations in application sensitivity due to load fluctua-
tions to increase utilization. Scheduling techniques for QoS
management are proposed for both CMPs [14,17,21,38,42]
and SMT architectures [13,35]. Other OS mechanisms such

as page-coloring are also proposed [23]. Besides OS solu-
tions, compiler-based approaches and runtime systems are
presented and evaluated [7, 34, 36, 37, 39]. Hardware tech-
niques including cache partitioning have been explored to
decrease inter-application contention [12, 16, 20, 23, 31, 32].
In addition to mitigating contention, there has been work on
detecting and measuring contention both in single servers
and large scale systems [10, 11, 18, 22, 26, 41]. Vasic et al.
present the DejaVu system, which utilizes an online cluster-
ing algorithm paired with a lookup table of virtual machine
signatures to adapt to load variations [40]. In addition, a
growing number of research projects now employ AI tech-
niques for cluster level management, increasing utilization,
and reducing resource conflicts [11,22].

8. CONCLUSION
In conclusion, we present an effective solution for sig-

nificantly increasing utilization while simultaneously pre-
cisely guaranteeing QoS. Our approach is more robust than
the prior Bubble-Up work, which, similar to all static ap-
proaches, is unable to adapt when the profile data diverges
from the actual runtime application behavior. By designing
an approach that exhibits greater generality than Bubble-
Up, our solution is viable in a larger number of data center
environments and can gracefully adapt to runtime scenarios
where its initial predictions are violated.

In addition, by combining the Online Flux Engine with
the Dynamic Bubble, we are able to not only increase WSC
utilization in the general cases but to do so even in an adver-
sarial application environment where the latency-sensitive
applications are highly sensitive and batch applications are
particularly contentious. In these cases, we are able to cap-
italize on a previously missed opportunity and increase uti-
lization by 10 to 90%, while strictly enforcing a range of QoS
targets.

9. REFERENCES
[1] Apache hadoop. http://hadoop.apache.org.

[2] Apache mahout: scalable machine-learning and
data-mining library. http://mahout.apache.org/.

[3] Cassandra. http://cassandra.apache.org.

[4] Faban harness and benchmark framework.
http://java.net/projects/faban/.

[5] L. Barroso and U. Hölzle. The datacenter as a
computer: An introduction to the design of
warehouse-scale machines. Synthesis Lectures on
Computer Architecture, 4(1):1–108, 2009.

[6] L. A. Barroso and U. Hölzle. The case for
energy-proportional computing. Computer,
40(12):33–37, Dec. 2007.

[7] B. Bin and C. Ding. Defensive loop tiling for shared
cache. In Proceedings of the Tenth International
Symposium on Code Generation and Optimization,
CGO ’13.

[8] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M.
Vahdat, and R. P. Doyle. Managing energy and server
resources in hosting centers. SIGOPS Oper. Syst.
Rev., 35(5):103–116, Oct. 2001.

[9] B. F. Cooper, A. Silberstein, E. Tam,
R. Ramakrishnan, and R. Sears. Benchmarking cloud
serving systems with ycsb. In Proceedings of the 1st
ACM symposium on Cloud computing, SoCC ’10,
pages 143–154, New York, NY, USA, 2010. ACM.

[10] C. Delimitrou and C. Kozyrakis. Paragon: Qos-aware
scheduling for heterogeneous datacenters. In
Proceedings of the eighteenth international conference
on Architectural support for programming languages
and operating systems, ASPLOS ’13, pages 77–88,
New York, NY, USA, 2013. ACM.

[11] T. Dwyer, A. Fedorova, S. Blagodurov, M. Roth,
F. Gaud, and J. Pei. A practical method for
estimating performance degradation on multicore
processors, and its application to hpc workloads. In
Proceedings of the International Conference on High
Performance Computing, Networking, Storage and
Analysis, SC ’12, pages 83:1–83:11, Los Alamitos, CA,
USA, 2012. IEEE Computer Society Press.

[12] E. Ebrahimi, C. Lee, O. Mutlu, and Y. Patt. Fairness
via source throttling: a configurable and
high-performance fairness substrate for multi-core
memory systems. ASPLOS 2010, Mar 2010.

[13] S. Eyerman and L. Eeckhout. Probabilistic job
symbiosis modeling for smt processor scheduling.
ASPLOS ’10: Proceedings of the fifteenth edition of
ASPLOS on Architectural support for programming
languages and operating systems, Mar 2010.

[14] A. Fedorova, M. Seltzer, and M. Smith. Improving
performance isolation on chip multiprocessors via an
operating system scheduler. PACT 2007, Sep 2007.

[15] M. Ferdman, A. Adileh, O. Kocberber, S. Volos,
M. Alisafaee, D. Jevdjic, C. Kaynak, A. D. Popescu,
A. Ailamaki, and B. Falsafi. Clearing the clouds: a
study of emerging scale-out workloads on modern
hardware. In Proceedings of the seventeenth
international conference on Architectural Support for
Programming Languages and Operating Systems,
ASPLOS ’12, pages 37–48, New York, NY, USA, 2012.
ACM.

[16] F. Guo, Y. Solihin, L. Zhao, and R. Iyer. A framework
for providing quality of service in chip
multi-processors. In Proceedings of the 40th Annual
IEEE/ACM International Symposium on
Microarchitecture, MICRO 40, pages 343–355,
Washington, DC, USA, 2007. IEEE Computer Society.

[17] Y. Jiang, K. Tian, and X. Shen. Combining locality
analysis with online proactive job co-scheduling in
chip multiprocessors. High Performance Embedded
Architectures and Compilers, pages 201–215, 2010.

[18] M. Kambadur, T. Moseley, R. Hank, and M. A. Kim.
Measuring interference between live datacenter
applications. In Proceedings of the International
Conference on High Performance Computing,
Networking, Storage and Analysis, SC ’12, pages
51:1–51:12, Los Alamitos, CA, USA, 2012. IEEE
Computer Society Press.

[19] R. Khare and D. Cutting. Nutch: A flexible and
scalable open-source web search engine. Technical
report, 2004.

[20] S. Kim, D. Chandra, and Y. Solihin. Fair cache
sharing and partitioning in a chip multiprocessor
architecture. PACT 2004, Sep 2004.

[21] R. Knauerhase, P. Brett, B. Hohlt, T. Li, and S. Hahn.
Using os observations to improve performance in
multicore systems. IEEE Micro, 28(3):54–66, 2008.

[22] S.-H. Lim, J.-S. Huh, Y. Kim, G. M. Shipman, and
C. R. Das. D-factor: a quantitative model of
application slow-down in multi-resource shared
systems. In Proceedings of the 12th ACM
SIGMETRICS/PERFORMANCE joint international
conference on Measurement and Modeling of
Computer Systems, SIGMETRICS ’12, pages 271–282,
New York, NY, USA, 2012. ACM.

[23] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and
P. Sadayappan. Gaining insights into multicore cache
partitioning: Bridging the gap between simulation and
real systems. HPCA 2008, pages 367–378, 2008.

[24] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L.
Soffa. Increasing utilization in warehouse scale
computers using bubbleup! IEEE Micro.

[25] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L.
Soffa. Bubble-up: Increasing utilization in modern
warehouse scale computers via sensible co-locations. In
MICRO ’11: Proceedings of The 44th Annual
IEEE/ACM International Symposium on
Microarchitecture, New York, NY, USA, 2011. ACM.

[26] J. Mars, N. Vachharajani, R. Hundt, and M. Soffa.
Contention aware execution: online contention
detection and response. CGO ’10: Proceedings of the
8th annual IEEE/ACM international symposium on
Code generation and optimization, Apr 2010.

[27] R. McMillan. Data center servers suck - but nobody
knows how much. October, 2012.

[28] D. Meisner, B. Gold, and T. Wenisch. Powernap:
eliminating server idle power. ASPLOS ’09:
Proceeding of the 14th international conference on
Architectural support for programming languages and
operating systems, Feb 2009.

[29] D. Meisner, C. M. Sadler, L. A. Barroso, W.-D.
Weber, and T. F. Wenisch. Power management of
online data-intensive services. In Proceedings of the
38th annual international symposium on Computer
architecture, ISCA ’11, pages 319–330, New York, NY,
USA, 2011. ACM.

[30] A. Mishra, J. Hellerstein, W. Cirne, and C. Das.
Towards characterizing cloud backend workloads:
insights from google compute clusters. ACM
SIGMETRICS Performance Evaluation Review,
37(4):34–41, 2010.

[31] M. Moreto, F. Cazorla, A. Ramirez, R. Sakellariou,
and M. Valero. Flexdcp: a qos framework for cmp
architectures. SIGOPS Operating Systems Review,
43(2), Apr 2009.

[32] M. K. Qureshi and Y. N. Patt. Utility-based cache
partitioning: A low-overhead, high-performance,

runtime mechanism to partition shared caches. In
Proceedings of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture,
MICRO 39, pages 423–432, Washington, DC, USA,
2006. IEEE Computer Society.

[33] G. Ren, E. Tune, T. Moseley, Y. Shi, S. Rus, and
R. Hundt. Google-wide profiling: A continuous
profiling infrastructure for data centers. IEEE Micro,
pages 65–79, 2010.

[34] S. Rus, R. Ashok, and D. Li. Automated locality
optimization based on the reuse distance of string
operations. CGO ’11, pages 181 –190, Apr 2011.

[35] A. Snavely and D. Tullsen. Symbiotic jobscheduling
for a simultaneous multithreaded processor.
ASPLOS-IX: Proceedings of the ninth international
conference on Architectural support for programming
languages and operating systems, Dec 2000.

[36] S. Son, M. Kandemir, M. Karakoy, and
D. Chakrabarti. A compiler-directed data prefetching
scheme for chip multiprocessors. PPoPP 2009, Feb
2009.

[37] L. Tang, J. Mars, and M. L. Soffa. Compiling for
niceness: mitigating contention for qos in warehouse
scale computers. In Proceedings of the Tenth
International Symposium on Code Generation and
Optimization, CGO ’12, pages 1–12, New York, NY,
USA, 2012. ACM.

[38] L. Tang, J. Mars, N. Vachharajani, R. Hundt, and
M. L. Soffa. The impact of memory subsystem
resource sharing on datacenter applications. pages
283–294, 2011.

[39] L. Tang, J. Mars, W. Wang, T. Dey, and M. L. Soffa.
Reqos: reactive static/dynamic compilation for qos in
warehouse scale computers. In Proceedings of the
eighteenth international conference on Architectural
support for programming languages and operating
systems, ASPLOS ’13, pages 89–100, New York, NY,
USA, 2013. ACM.

[40] N. Vasić, D. Novaković, S. Miučin, D. Kostić, and
R. Bianchini. Dejavu: accelerating resource allocation
in virtualized environments. SIGARCH Comput.
Archit. News, 40(1):423–436, Mar. 2012.

[41] Q. Zhao, D. Koh, S. Raza, D. Bruening, W. Wong,
and S. Amarasinghe. Dynamic cache contention
detection in multi-threaded applications. VEE 2011,
pages 27–38, 2011.

[42] S. Zhuravlev, S. Blagodurov, and A. Fedorova.
Addressing shared resource contention in multicore
processors via scheduling. SIGARCH Comput. Archit.
News, 38(1):129–142, Mar. 2010.

	Introduction
	Background and Motivation
	QoS and Utilization in WSC
	Static Approach and Its Limitations
	Bubble-Up Methodology
	Limitations of Bubble-Up

	Bubble-Flux Overview
	Dynamic Bubble
	Online Flux Engine
	Evaluation
	Effectiveness Without A Priori Knowledge
	Capture and Adapt to Load Fluctuation
	Scalability beyond Pairwise
	Applying Bubble-Flux in a WSC

	Related Work
	Conclusion
	References

