
Whare-Map: Heterogeneity in “Homogeneous”
Warehouse-Scale Computers

Jason Mars∗

Univ. of California, San Diego
mars@cs.ucsd.edu

Lingjia Tang
Univ. of California, San Diego

lingjia@cs.ucsd.edu

ABSTRACT

Modern “warehouse scale computers” (WSCs) continue to
be embraced as homogeneous computing platforms. How-
ever, due to frequent machine replacements and upgrades,
modern WSCs are in fact composed of diverse commodity
microarchitectures and machine configurations. Yet, current
WSCs are architected with the assumption of homogene-
ity, leaving a potentially significant performance opportunity
unexplored.

In this paper, we expose and quantify the performance
impact of the“homogeneity assumption” for modern produc-
tion WSCs using industry-strength large-scale web-service
workloads. In addition, we argue for, and evaluate the
benefits of, a heterogeneity-aware WSC using commercial
web-service production workloads including Google’s web-
search. We also identify key factors impacting the avail-
able performance opportunity when exploiting heterogeneity
and introduce a new metric, opportunity factor, to quantify
an application’s sensitivity to the heterogeneity in a given
WSC. To exploit heterogeneity in “homogeneous” WSCs,
we propose “Whare-Map,” the WSC Heterogeneity Aware
Mapper that leverages already in-place continuous profil-
ing subsystems found in production environments. When
employing “Whare-Map”, we observe a cluster-wide perfor-
mance improvement of 15% on average over heterogeneity–
oblivious job placement and up to an 80% improvement for
web-service applications that are particularly sensitive to
heterogeneity.

1. INTRODUCTION
Warehouse-scale computers (WSCs) [7,18] are the class of

datacenters that are designed, built, and optimized to run
a number of large data-intensive web-service applications.
Internet service companies such as Google, Microsoft, Ama-
zon, Yahoo, and Apple spend hundreds of millions of dollars
to construct and operate WSCs that provide web-services
such as search, mail, maps, docs, and video [1,6,11,25]. This
large cost stems from the machines themselves, power distri-
bution and cooling, the power itself, networking equipment,
and other infrastructure [14,15]. Improving the overall per-

∗This work was in part completed while interning at Google.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’13, Tel-Aviv, Israel.
Copyright 2013 ACM 978-1-4503-2079-5/13/06 ...$15.00.

Table 1: # of Machine Configs. in Google WSCs
D0 D1 D2 D3 D4 D5 D6 D7 D8 D9

4 3 2 3 2 3 2 5 2 2

...

Job
Manager

Homogenous Cores Assumption (Job Managers View)

Actual Machines are Heterogeneous

Jobs

Cores

Machines

J1, J2, J3, J4, ...

Figure 1: The Homogeneous Assumption - The Job
Manager’s View of a WSC

formance of jobs running in WSCs has been identified as one
of the top priorities of web-service companies as it improves
the overall cost efficiency of operating a WSC.

WSCs have been embraced as homogeneous computing
environments [6–8]. However this is not the case in practice.
These WSCs are typically composed of cheap and replace-
able commodity components. As machines are replaced in
these WSCs, new generations of hardware are deployed while
older generations continue to operate. This leads to a WSC
that is composed of a mix of machine platforms, i.e., a
heterogeneous WSC. Table 1 shows the amount of platform
diversity found in 10 randomly selected anonymized Google
WSCs in operation. As shown in the table, these 10 dat-
acenters house as few as two and as many as five different
microarchitectural configurations, including both Intel and
AMD servers from several consecutive generations. Yet, the
assumption of homogeneity has been a core design philos-
ophy behind the job management subsystems and system
software stack of modern WSCs [7]. As Figure 1 shows, the
job manager views a WSC as a collection of tens to hundreds
of thousands of cores with the assumption of homogeneity.
Available machine resources are assigned to jobs according
to their core and memory requirements. The diversity across
the underlying microarchitectures in a WSC is not explicitly
considered by the job management subsystem. However, as
we show in this work, ignoring this heterogeneity is costly,
leading to inefficient execution of applications in WSCs.

While prior work [9,13,35,36] has acknowledged the hetero-
geneity in various types of datacenter systems, the homoge-
neous assumption is still widely adopted in modern WSCs
due to 1) the limited understanding of the performance cost
of this assumption in real commercial systems and 2) the
lack of practical system design to exploit the heterogeneity
in production.

There are two key insights to consider in understanding
the heterogeneity present in emerging WSC system archi-
tectures:

1. The heterogeneity in WSCs differs than that found in
a heterogeneous multicore chip, or the heterogeneity
across processors in a single machine. In a WSC, it
is the diversity in execution environments that must
be considered. Broadly, we define an application’s
execution environment as the set of factors that can
influence the execution of the application. In the scope
of this paper, we focus this definition to the hetero-
geneity of the underlying processor microarchitecture
coupled with the diverse possibilities of simultaneous
co-running jobs on a given machine.

2. In the production WSC environments of large webser-
vice companies such as Google, the system’s hardware,
software, and application stacks are co-designed for
efficiency, and there is a set of key applications that
run continually in these WSCs (such as websearch,
maps, etc). This observation leads to an important
insight. The performance opportunity present from
the heterogeneity in machines are defined by the mix
of applications that will run on these machines, and in
turn, the performance opportunity present from the di-
versity in applications is defined by the particular mix
of underlying machine configurations. As we vary ei-
ther, the amount of performance opportunity changes
significantly. As we show in this work, this can be for-
mally quantified using a metric we call an application’s
opportunity factor.

These insights are prescriptive as to how we design a
system to exploit this heterogeneity. Modern production
WSC systems deploy continuous profiling runtimes such as
the Google Wide Profiler (GWP) [27] that are run in pro-
duction throughout the lifetime of the WSC. Currently these
infrastructures are primarily used for retrospective analysis
and offline tuning. However, as we argue in this work, these
systems can and should be used to drive continuous online
learning to steer heterogeneity analysis and adaptation in
production. By harnessing these already in-place continu-
ous monitoring capabilities, we demonstrate the efficacy of
this approach with the design of the WSC Heterogeneity-
aware Mapper, Whare-Map. Using Whare-Map, a novel
extension to the core architecture of the WSC system design,
we demonstrate how this heterogeneity can be exploited by
leveraging in-place WSC monitoring subsystems.

Specifically, the contributions of this paper include:

• Web-service Sensitivity to Heterogeneity: We
investigate the performance variability for large-scale
web-service applications caused by the heterogeneity
in “homogeneous” WSCs as it relates to microarchi-
tectural configurations and application co-locations in
production environments. We also introduce a novel
metric, the opportunity factor, which quantifies how
sensitive an application is to the heterogeneity. This
metric characterizes the performance improvement po-
tential for a given application when mapped intelli-
gently in a given WSC.

• Whare-Map: We present Whare-Map, an extension
to the current WSC architecture to exploit the emer-

gent heterogeneity in WSCs. Whare-Map intelligently
maps jobs to machines to improve the overall perfor-
mance of a WSC. A required component of such ap-
proach is the ability to score and rank job-to-machine
maps. We provide four map scoring policies that take
advantage of the live monitoring services in modern
WSCs, discuss the key tradeoffs between them, and
perform a thorough evaluation in an experimental clus-
ter environment.

• Heterogeneity in Production: We investigate the
amount of heterogeneity present in a number of pro-
duction WSCs running live Google Internet services
including websearch, each housing thousands of nodes.
We demonstrate the potential of Whare-Map by using
it to quantify the performance opportunity from ex-
ploiting the heterogeneity in these production WSCs.

• Factors Impacting Heterogeneity: The rationale
behind the homogeneity assumption stems from a lack
of understanding of how the gradual introduction of
diverse microarchitectural configurations and applica-
tion types to a WSC impacts the performance vari-
ability. In this work, we also present a careful study
of how varying the diversity in applications and ma-
chine types in a WSC affects how “homogenous” or
“heterogeneous” a WSC becomes. We find that even a
slight amount of diversity in these factors can present
a significant performance opportunity. Based on our
findings, we then discuss the tradeoffs for server pur-
chase decisions and show that embracing heterogeneity
can indeed improve the cost-efficiency of the WSC in-
frastructure.

A prototype of Whare-Map is evaluated on both a Google
testbed composed of 9 large-scale production web-service ap-
plications and 3 types of production machines, as well as an
experimental testbed composed of benchmark applications
to provide repeatable experimentation.

Results Summary: This paper shows that there is a
significant performance opportunity when taking advantage
of emergent heterogeneity in modern WSCs. At the scale of
modern cloud infrastructures such as those used by compa-
nies like Google, Apple, and Microsoft, gaining just 1% of
performance improvement for a single application translates
to millions of dollars saved. In this work, we show that large-
scale web-service applications that are sensitive to emergent
heterogeneity improve by more than 80% when employing
Whare-Map over heterogeneity-oblivious mapping. When
evaluating Whare-Map using our testbed composed of key
Google applications running on three types of production
machines commonly found co-existing in the same WSC, we
improve the overall performance of an entire WSC by 18%.
We also find a similar improvement of 15% in our benchmark
testbed and in our analysis of production data from WSCs
hosting live services.

Next, in Section 2 we discuss the background of our work.
We then present a study of the heterogeneity in the WSC
in Section 3. Section 4 presents our Whare-Map approach
for exploiting heterogeneity in the WSC. We present an
in-depth evaluation of the performance benefit of Whare-
Map including a study in Google’s production WSCs in
Section 5. We present related work in Section 6, and finally,
we conclude in Section 7.

2. BACKGROUND
In this section, we describe the job placement and online

monitoring components that are core to the system archi-
tecture of modern WSCs.

workload description

bigtable A distributed storage system for managing petabytes of structured data
ads-servlet Ads server responsible for selecting and placing targeted ads on syndication partners sites
maps-detect-face Face detection for streetview automatic face blurring
search-render Websearch frontend server, collect results from many backends and assembles html for user.
search-scoring Websearch scoring and retrieval
protobuf Protocol Buffer, a mechanism for describing extensible communication protocols and on-disk structures.

One of the most commonly-used programming abstractions at Google.
docs-analyzer Unsupervised Bayesian clustering tool to take keywords or text documents and “explain” them with

meaningful clusters.
saw-countw Sawzall scripting language interpreter benchmark
youtube-x264yt x264yt video encoding.

Table 2: Production WSC Applications

2.1 Job Placement in WSCs
A WSC provides a view of the underlying system as a

single machine with hundreds of thousands of cores and
petabytes of memory. A job in a WSC is an application
process that is typically long running, responsible for a par-
ticular sub task of a major service, and can generally be run
on any machine within the WSC. Example jobs in a WSC
include a result scorer for websearch, an image stitcher for
maps, a compression service for video, etc. Job placement
in the WSC is managed by a central job manager [7,21,30].
The job manager is a cluster-wide runtime that is tasked
with mapping the job mix to the set of machine resources
in a WSC, and operates independently of the OS. Each
job has an associated configuration file that specifies the
number of cores and memory required to execute the job.
Based on the resource requirement, the job manager uses a
bin-packing algorithm to place the job to a machine with
the required resources available [21], after which a machine
level manager (in the form of a daemon running in user-
mode) uses resource containers [5] to allocate and manage
the resources belonging to the task. The currently deployed
job manager is unaware of machine heterogeneity and the
potential benefits of intelligent job placement. We integrate
our Whare-Map technique described in Section 4 with the
job manager to conduct heterogeneity-aware mapping.

2.2 Live Monitoring in WSCs
For our WSC design to effectively exploit heterogeneity

in job placement decisions, the job manager requires con-
tinuous feedback from prior placement decisions. At a min-
imum, a sampling of a service’s performance on an assort-
ment of platforms and co-runners is necessary. Fortunately,
this rudimentary continuous cluster-wide monitoring capa-
bility is already deployed and available in state-of-the-art
WSC platforms. For example, the Google Wide Profiler
(GWP) [27] continuously profiles jobs and machines as they
run in production and is deployed as a standard service in
Google’s entire production fleet. GWP provides a database
and associated API that can be leveraged by software sys-
tems, such as the job manager, to query information about
application placement, performance, and co-running jobs
on a machine. As described later, our heterogeneity-aware
technique uses the monitoring information provided by ser-
vices such as GWP to conduct intelligent job-to-machine
mappings.

3. HETEROGENEITY IN MODERN WSCS
The potential benefit of heterogeneity-awareness in WSCs

hinges on the performance variability of applications across
diverse microarchitectural configurations and co-runners. In
this section, we investigate such performance variability for
large-scale Internet service production applications. We fo-
cus on the performance sensitivity of applications to emer-

CPU GHz Cores L2/L3 Name

Clovertown Xeon E5345 2.33ghz 6 8mb Clover
Istanbul Opteron 8431 2.4ghz 6 6mb Istan
Westmere Xeon X5660 2.8ghz 6 12mb West

Table 3: Production Microarchitecture Mix

CPU GHz Cores L2/L3 Memory

Core i7 920 2.67ghz 4 8mb 4gb
Core 2 Q8300 2.5ghz 4 4mb 3gb
Phenom X4 910 2.6ghz 4 6mb 4gb

Table 4: Experimental Microarchitecture Mix

gent heterogeneity and, equally importantly, the variance of
this sensitivity itself across applications.

In addition to the production applications, we also present
results using an testbed composed of benchmark applica-
tions. Finally, we introduce a metric, opportunity factor,
that, given the application mix and machine mix in a WSC,
quantifies an application’s sensitivity to heterogeneity within
a closed eco-system of machine configurations and diverse
applications.

3.1 Characterization Methodology
[Google Testbed] We first conducted our experiments

using commercial applications (shown in Table 2) across
three production platform types commonly found in Google’s
WSCs (shown in Table 3). The applications shown in the
table cover nine large industry-strength workloads that are
responsible for a significant portion of the cycles consumed
in arguably the largest web-service WSC infrastructure in
the world. Table 2 also presents a description for each
application. Each application corresponds to an actual bi-
nary that is run in the WSC. These applications are part
of a test infrastructure developed internally at Google com-
posed of a host of Google workloads and machine clusters
that have been both laboriously configured by a team of
engineers for performance analysis and optimization testing
across Google. Each application shown in the table operates
on a repeatable log of thousands of queries of user activity
from production. We use this test infrastructure throughout
the remainder of this work. The number of cores used by
each application is configured to three for both solo and co-
location runs.

[Benchmark Testbed] To investigate how our findings
using Google’s infrastructure generalize to other application
sets and to provide experimental results that are repeat-
able, we replicate our study in an experimental benchmark
testbed. In our experimental infrastructure we use a spec-

ad
s−

se
rv

le
t

m
ap

s−
d
et

ec
t−

fa
ce

se
ar

ch
−

re
n
d
er

se
ar

ch
−

sc
o
ri

n
g

p
ro

to
b
u
f

d
o
cs

−
an

al
y
ze

r

sa
w

−
co

u
n
tw

y
o
u
tu

b
e−

x
2
6
4
y
t

m
ea

n

N
o
rm

al
iz

ed
 P

er
fo

rm
an

ce Clover
Istan
West

 1x

 1.5x

 2x

 2.5x

 3x

 3.5x

b
ig

ta
b
le

Figure 2: Performance comparison
of key Google applications across
three microarchitectures. (higher is
better)

ad
s−

se
rv

le
t

m
ap

s−
d
et

ec
t−

fa
ce

se
ar

ch
−

re
n
d
er

se
ar

ch
−

sc
o
ri

n
g

p
ro

to
b
u
f

d
o
cs

−
an

al
y
ze

r

sa
w

−
co

u
n
tw

y
o
u
tu

b
e−

x
2
6
4
y
t

P
er

fo
rm

an
ce

 I
m

p
ac

t

BT on Clover

BT on Istan

BT on West

SS on Clover

SS on Istan

SS on West

PB on Clover

PB on Istan

PB on West

 −30%

 −25%

 −20%

 −15%

 −10%

 −5%

 0%

 5%

b
ig

ta
b
le

Figure 3: Google application performance when co-located with
bigtable (BT), search-scoring (SS), and protobuf (PB). (negative
indicates slowdown)

trum of 22 SPEC CPU2006 benchmarks on their ref input
as our application types and three state of art microarchi-
tectures as our machine types running Linux 2.6.29. The
underlying microarchitectures of these three machine types
are presented in Table 4. All application types are compiled
with GCC 4.5 with O3 optimization.

3.2 Investigating Heterogeneity
[Microarchitectural Heterogeneity] We first charac-

terize the performance variability due to microarchitectural
heterogeneity in WSCs. In addition to quantifying the mag-
nitude of the performance variability, our study also aims to
investigate firstly, whether one microarchitectural configura-
tion consistently outperforms others for all applications; and
secondly, the variance of sensitivities across applications. As
we discuss later in this section, the variance in performance
sensitivity across a given application mix is indicative of
the performance potential of adopting a heterogeneity-aware
WSC design.

Figure 2 presents the experimental results for our Google
testbed with 9 key Google applications (Table 2) running
on 3 types of production machines (Table 3). The y-axis
shows the performance (average instructions per second) of
each application on three types of machines, normalized by
the worst performance among the three for each application.
Docs-analyzer’s data on Istanbul is missing because it is not
configured for that particular platform.

Figure 2 shows that even among three architectures that
are from competing generations, there is a significant per-
formance variability for Google applications. More inter-
estingly, no platform is consistently better than the oth-
ers in this experiment. Although the Westmere Xeon out-
performs the other platforms for most applications, maps-
detect-face running on the Istanbul Opteron outperforms
the Westmere Xeon by around 25%. On the other hand,
the Clovertown Xeon and Istanbul Opteron compete much
more closely. It is also important to note that even though
the Westmere Xeon platform is almost always better than
the other two, the performance sensitivity to platform types
vary significantly across applications, ranging from gaining
only 10% speedup for protobuf when switching from the
worst platform (Opteron) to the best (Westmere Xeon), to
as large as 3.5x speedup for docs-analyzer. This hetero-
geneity in performance sensitivity (various speedup ratios)
impacts how job placement decisions should be made to
maximize the overall performance and the amount of poten-
tial performance improvement achievable by intelligent map-

ping. To maximize the overall performance for a WSC com-
posed of a limited number of each microarchitecture, a smart
job manager should prioritize mapping those applications
with higher speedup ratio to the faster machines. For exam-
ple, to achieve the best overall performance, docs-analyzer
or big-table should be prioritized to use the Westmere
Xeon over protobuf. In Section 5.4 we delve into more
details as what cause the performance variability by varying
the workload mix.

[Co-Runner Heterogeneity] Figure 3 illustrates the
performance variability due to co-location interference for
Google applications. This figure shows the performance
interference of each of the 9 Google applications when co-
located with bigtable (BT), search-scoring (SS) and pro-
tobuf (PB). The y-axis shows the performance degradation
of each benchmark when co-located on each platform. This
degradation is calculated using the application’s execution
rate when co-located normalized to the execution rate when
it is running alone on that platform. The lower the bar, the
more severe the performance penalty. We observe that the
same co-runner causes varying performance penalties to dif-
ferent applications with performance degradations ranging
from close to no penalty, 2% or less in some cases, to almost
30%.

More interestingly, the heterogeneity in co-location penalty
is not an isolated factor and is complicated by the hetero-
geneity in microarchitecture. As shown in the figure, for
each application, the same co-running application may cause
varying performance penalties on different microarchitec-
tures. Also, microarchitectural heterogeneity on average
has a more significant performance impact than co-location
heterogeneity. While there is generally less than 30% per-
formance degradation due to co-location, the performance
variability due to microarchitectural heterogeneity is up to
3.5x. However, the relative impact of the two depends on
applications. For some applications (e.g., protobuf), co-
running heterogeneity has a greater impact than machine
heterogeneity. The above observations imply that when
exploiting the heterogeneity in WSCs to improve perfor-
mance via better job-to-machine mapping, there may be
a compounding benefit to consider both machine and co-
runner heterogeneity simultaneously.

In addition to Google production applications, we also
conducted similar experiments on our benchmark testbed.
The results are presented in Figures 4 and 5. In sum-
mary, we observe that the amount of variability present from
microarchitectural and co-runner diversity is significant for

 1x

 1.2x

 1.4x

 1.6x

 1.8x

 2x

 2.2x

 2.4x

p
er

lb
en

ch

b
zi

p
2

g
cc

m
cf

g
o

b
m

k

h
m

m
er

sj
en

g

li
b

q
u

an
tu

m

h
2

6
4

re
f

o
m

n
et

p
p

as
ta

r

x
al

an
cb

m
k

m
il

c

g
ro

m
ac

s

ca
ct

u
sA

D
M

n
am

d

d
ea

lI
I

so
p

le
x

p
o

v
ra

y

ca
lc

u
li

x

lb
m

sp
h

in
x

3

m
ea

n

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

 Core i7
Core 2
Phenom X4

Figure 4: Performance comparison of benchmark
workloads across three microarchitectures.

 −35%

 −30%

 −25%

 −20%

 −15%

 −10%

 −5%

 0%

 5%

p
er

lb
en

ch

b
zi

p
2

g
cc

m
cf

g
o

b
m

k

h
m

m
er

sj
en

g

li
b

q
u

an
tu

m

h
2

6
4

re
f

o
m

n
et

p
p

as
ta

r

x
al

an
cb

m
k

m
il

c

g
ro

m
ac

s

ca
ct

u
sA

D
M

n
am

d

d
ea

lI
I

so
p

le
x

p
o

v
ra

y

ca
lc

u
li

x

sp
h

in
x

m
ea

n

P
er

fo
rm

an
ce

 I
m

p
ac

t

Core i7
Core 2
Phenom X4

Figure 5: Benchmark slowdown when co-located
with lbm.

both Google applications and benchmark applications. In
addition, applications present various levels of performance
sensitivity to such heterogeneity. This indicates that the
homogeneity assumption may leave a large performance op-
portunity untapped.

3.3 OF: An Opportunity Metric
An important concept arises from the previous section.

Depending on how “immune” or “sensitive” an application is
to microarchitectural and co-runner variation, each applica-
tion would benefit differently from a job mapping policy that
takes advantage of heterogeneity. We introduce a metric,
opportunity factor, that approximates a given application’s
potential performance improvement opportunity relative to
all other applications, given a particular mix of applications
and machine types. The higher the opportunity factor, the
more sensitive an application is to diversity in the WSC.
Note that this opportunity factor can be calculated only
when the application mix and the machine mix are known.

For a given WSC, we can denote the application of type i
as Ai, and the microarchitecture of type j as Mj . We define
the speedup factor for Ai as:

SFAi
=

maxj,k{IPSAi,Mj,Ck
} − minj,k{IPSAi,Mj,Ck

}

minj,k{IPSAi,Mj,Ck
}

, (1)

where IPSAi,Mj ,Ck
is application Ai’s IPS (instruction per

second) when it is running on machine Mj with a set of
co-runners Ck. The SFAi is essentially the amount of per-
formance variability of Ai in all possible configurations of
the execution environment, composed of the cross product
of all machine options and co-runner options. Using SFAi ,
we can define the Opportunity Factor (OF) for Ai as:

OFAi =
SFAi∑
j SFAj

(2)

OFAi represents the sensitivity of each application type to
the overall heterogeneity of a given application mix relative
to all other applications. This metric allows WSC design-
ers, operators and reliability engineers to reason about the
performance improvement potential of various applications
in the WSC and identify applications that are most likely to
benefit from heterogeneity-aware job mapping. We present
and discuss OF results in Section 5.2.

4. WHARE-MAP
In this section, we present an approach to exploit hetero-

geneity that is particularly well-suited for production WSCs
as it leverages already in-place subsystems found in state-
of-the-art WSCs to perform job-to-machine mapping.

Job
Manager

Whare-Map

GWP

 Datacenter

 Machine

Application

 Machine

Map Scorer

 Machine

Application
Application

Application
Application ...

Optimization Solver

Figure 6: The Overview of Whare-Map

4.1 Overview
Whare-Map harnesses the continuous profiling informa-

tion provided by in-production monitoring services such as
the Google Wide Profiler (GWP) [27] to intelligently map
jobs to machines. Figure 6 illustrates how Whare-Map is
integrated in the core system architecture of WSCs, enabling
them to exploit heterogeneity. We formulate the problem of
mapping jobs to machines as a combinatorial optimization
problem and thus an integral component of Whare-Map is
the optimization solver (discussed in Section 4.2).

Another key requirement for Whare-Map is the continu-
ous online analysis and comparison of mapping decisions.
As illustrated in Figure 6, Map Scorer utilizes GWP to
perform such analysis. GWP is a system-wide service that
continuously monitors and profiles jobs as they run in pro-
duction WSCs and archives the profiling information in a
database. As shown in the figure, Map Scorer extracts
information from the GWP database to build and continu-
ously refine an internal representation of profiles, analyzing
the performance of each application in various execution
environments. Using the profiles and scoring by Map Scorer,
theOptimization Solver compares various mapping decisions
and their relative performance. It is important to note
that during the optimization process, instead of the costly
approach of actually mapping jobs to various execution en-
vironments to identify the best mapping, the Optimization
Solver relies on the Map Scorer to utilize the historical
profiling data from GWP of how well a job performs in each
given environment. A continuous profiling service such as

Approach Description Complexity

Whare-C Co-location Score: This score is based only on co-location penalty and only requires profiling the co-
location penalty on any type of machine. Once a co-location profile is collected it is then used to score
that co-location regardless of the underlying microarchitecture.

|A|n

Whare-Cs Co-location Score (Smart): This score is based on co-location penalty with microarchitecture specific
information. Information about co-location penalty must be collected for all platforms of interest.

|A|n × |M |

Whare-M Microarchitectural Affinity Score: This score is based on microarchitectural affinity and captures only
the speedup of running each application on one microarchitecture over another.

|A| × |M |

Whare-MCs Microarchitectural Affinity and Co-location Score: This scoring method includes both microarchi-
tectural affinity and microarchitecture specific co-location penalty. This scoring technique has the heaviest
profiling requirements.

|A|n+1 × |M |

Table 5: Scoring Policies for Mapping

GWP is a key component that makes Whare-Map feasible
in live production systems. It is also important to make the
distinction between the costs associated with populating the
GWP database (referred to later as profiling complexity)
and the cost of utilizing the information in GWP’s database
to search for the optimal mapping. The former occurs con-
tinuously through the lifetime of operation of the WSC,
while the latter is often in the order of minutes for a typical
scale of thousands of machines and dozens of application
types.

4.2 Whare-Map: An Optimization Problem
As mentioned earlier, we formulate the problem of map-

ping jobs of different types and characteristics to a set of
heterogeneous machine resources as a combinatorial opti-
mization problem. The optimization objective is to max-
imize the overall performance of the entire WSC, i.e., the
aggregated instruction-per-second (IPS) of all jobs. This
formulation as an optimization problem is especially suitable
for modern WSCs for a number of reasons: 1) The set
of important applications are known and fairly stable; 2)
the main web-service jobs are often long running jobs; and
3) migrations of jobs rarely happens because of the high
cost. Our Whare-Map is then essentially a solver for this
optimization problem.

Algorithm 1: Optimization Algorithm in Whare-Map

Input: set of free machines and available jobs
Output: an optimized mapping

1 while free machines and available jobs do
2 map random job to random machine;
3 end
4 set last score to the score of current map;
5 while optimization timer not exceeded do
6 foreach machine do
7 foreach job on that machine do
8 swap job with random job on random machine;
9 set cur score to the score of current map;

10 if mapping score is better then
11 set last score to cur score;
12 else
13 swap jobs back to original placements;
14 end

15 end

16 end

17 end

The core algorithm (Algorithm 1) we use to solve the
optimization problem is inspired by well established tradi-
tional iterative optimization techniques [26, 28, 32]. We use
a stochastic hill climbing numerical optimization approach
in Whare-Map as it is well suited for the type and scale
of the problem of mapping jobs to machines and converges
rather quickly for our problem formulation (typically less
than 1 minute of search). It is important to note that

other numerical optimization approaches such as simulated
annealing and genetic algorithms can also be used to per-
form the search. However, we observe that for the nature of
our problem, the stochastic hill climbing approach produces
mappings that match the quality of these alternatives and
converges quickly.

4.3 Map Scoring
A score of a particular placement of a job to a machine is

used to measure the quality of the job placement. We use
the sum of all individual placement scores to score an entire
map of jobs to machines. The higher the score, the better
the map. The scoring policy is an essential part in Whare-
Map. It is used in each optimization iteration to compare
mappings. In this work, we present and evaluate a number of
scoring policies that vary in the required profiling necessary
to generate the score. Table 5 shows the descriptions and
profiling complexities for our map scoring policies, where |A|
corresponds to the number of application types, |M | corre-
sponds to the number of machine types, and n corresponds
to the number of co-runners allowed on each machine. The
profiling complexity indicates the amount of profiling the
Map Scorer needs from GWP. For example, among all poli-
cies, Whare-M requires the smallest amount of profiling, |A|
x |M |, indicating that the scorer only needs performance
profiles of each application type on each machine type from
GWP without the need of knowing the application’s co-
runners when the profiling was conducted. In a practical
setting of a WSC, |A| is in the order of magnitude of 10s, |M |
is often less than 10, and n is often only 1 or 2. Typically,
only one or two major web-service jobs, in addition to several
low-overhead background processes such as logsaver, are
co-located on a given machine in a WSC.

The accuracy of the scoring policy determines the map-
ping quality of Whare-Map. Whare-MCs has the complete
information and should provide the best result. Meanwhile,
Whare-M,Whare-C andWhare-Cs require less time for GWP
to collect all needed information. However, they are also
less accurate, and thus may lead to suboptimal results. The
trade off is between the amount of available profiling infor-
mation and maximizing the performance gain. In addition,
the landscape of diversity present in the WSC has a signifi-
cant impact on the usefulness of some profiling information.
In Section 5.4, we further investigate the factors that impact
the diversity and discuss the selection of the appropriate
map scoring policies.

The complexity of Whare-Map is decided by both the
profiling complexity of scoring policies and the computation
complexity of the optimization solver. However, as we men-
tioned before, GWP continuously profiles in the background
through the lifetime of a WSC and its cost is thus hidden
from Whare-Map. Whare-Map simply utilizes the profil-
ing information available at any given time and continually
refines its performance profiles based on the newly accu-

2−Jobs−Google 1−Job−SPEC 2−Jobs−SPEC

N
o
rm

al
iz

ed
 I

P
S

Worst
Oblivious
Whare−C
Whare−Cs
Whare−M
Whare−MCs

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

Figure 7: The normalized performance (aggregated
IPS) of Whare-Map, compared to the heterogeneity-
oblivious mapper and the worst case (higher is
better)

 2.5x

 3x

 3.5x

2−Jobs−Google 1−Job−SPEC 2−Jobs−SPEC

N
o

rm
al

iz
ed

 L
at

en
cy

Worst
Oblivious
Whare−C
Whare−Cs
Whare−M
Whare−MCs

 1x

 1.5x

 2x

Figure 8: The normalized latency of a given
WSC when using Whare-Map, compared to the
heterogeneity-oblivious mapper and worst case
(lower is better)

mulated profiling data collected by GWP to continuously
improve its scoring and thus the mapping decisions. On the
other hand, the complexity of using our optimization solver
based on the map scores to search for the optimal mapping
is relatively low, typically in an order of seconds.

5. EVALUATING WHARE-MAP
In this section, we measure the performance improvement

when using our heterogeneity-aware approach, Whare-Map,
over current heterogeneity-oblivious mapping. We also eval-
uate the performance of four different scoring policies dis-
cussed in Section 4.3. In addition to the overall performance
of an entire WSC, we present the application-level perfor-
mance achieved by Whare-Map and compare it with the
estimation provided by the opportunity factor. Lastly, we
delve into the factors affecting emergent heterogeneity and
how this heterogeneity impacts the cost efficiency of server
purchase decisions.

5.1 Experimental Methodology
We conduct thorough investigation and evaluation in three

domains. We evaluate Whare-Map using Google and bench-
mark testbeds (Section 5.2). In addition, we analyze its po-
tential in production WSCs running live web-services (Sec-
tion 5.3). For experimentation using Google and benchmark
testbeds, we use platform types previously presented in Ta-
bles 3 and 4 along with the 9 Google key applications and
22 SPEC CPU2006 benchmarks, respectively.

For our testbed evaluation, we construct an oracle based
on comprehensive runs on real machines. Given a map of
jobs to a set of machines, this oracle reports the perfor-
mance of that mapping. To construct this oracle, we run all
combinations of co-locations on all machine platforms and
collect performance information. This performance infor-
mation is in the form of instructions per second (IPS) for
each application in every execution environment. Using this
information we construct a knowledge bank that is used as
a reference for the performance of a particular event in a
given WSC. We use the same Google workload suite used to
evaluate machine configurations internally. These workloads
are composed of Google’s core commercial services and have
been tuned to exercise mainly the processor and the mem-
ory subsystems and have minimal run to run performance
variance (˜1% on average). The input set used is composed
of large traces of real world production queries. This setup
allows us to focus our study on the emergent heterogeneity
in microarchitectural configuration and the microarchitec-
tural interaction between co-runners. The knowledge bank
serves two purposes for the evaluation conducted on the
testbeds. Firstly, given a job-to-machine mapping, we use

the knowledge bank as the oracle to calculate the aggregate
performance of the entire WSC composed of various machine
types. Secondly, the knowledge bank is used to model GWP
where, depending on the scoring policy, partial information
(such as only machine heterogeneity or co-location hetero-
geneity) is used for various levels of profiling complexity. In
our production analysis, live GWP information is used.

5.2 Google and Benchmark Testbeds
[Overall IPS] In Figure 7, we compare our Whare-Map,

the heterogeneity-oblivious mapper and the worse case map-
per for overall performance of a WSC. The heterogeneity-
oblivious mapper randomly maps a job to a machine based
only on the job’s resource requirement irrespective to the
heterogeneous machine types and corunning jobs on that
machine. We first use the aggregated instructions per sec-
ond (IPS) of all machines as our performance metric for
the entire WSC. The experiments shown in this figure are
conducted on Google testbed (1st cluster of bars) and bench-
mark testbed (2nd and 3rd clusters of bars). The y-axis
shows the normalized overall performance (IPS) of a WSC
when using various job-to-machine mapping policies. To cal-
culate the normalized IPS performance of an entire WSC for
a given job-to-machine mapping, we aggregate the average
IPS of all jobs. The normalization baseline for each cluster
of bars is the sum of the average IPS of each job when it
is run alone on its best performing machine type. Higher is
better.

The first cluster of bars presents results for the Google
testbed. In this experiment, the testbed WSC is composed
of 500 machines with 1000 jobs running; two jobs are co-
located on each machine. We choose the 2-Jobs scenario
because, given typical core and memory requirements, one
or two major web-service jobs are co-located on a given
machine in our production WSCs. The machine compo-
sition and workloads of the WSC are randomly selected
from the three machine types shown in Table 3 and 9 key
Google applications shown in Table 2. Each bar in the
cluster presents the performance for the worst mapping,
heterogeneity-oblivious mapping, as well as Whare-Map us-
ing four varying scoring policies as discussed in Section 4.3.
Similarly, the second and third clusters present results for
benchmark testbed.

For the 1-Job scenario, there are 500 jobs running in
a WSC composed of 500 machines with one job running
on each machine; while the 2-Jobs scenario has 1000 jobs
running on 500 machines. The machine composition and
workloads of the WSC are also randomly generated using the
three machine types from our benchmark testbed (Table 4)
and SPEC CPU2006 suite.

In Figure 7, we observe a significant benefit from using

Whare−MCs

 0.6x

 0.8x

 1x

 1.2x

 1.4x

 1.6x

 1.8x

 2x

b
ig

ta
b

le

ad
s−

se
rv

le
t

m
ap

s−
d

et
ec

t−
fa

ce

se
ar

ch
−

re
n

d
er

se
ar

ch
−

sc
o

ri
n

g

p
ro

to
b

u
f

d
o

cs
−

an
al

y
ze

r

sa
w

−
co

u
n

tw

y
o

u
tu

b
e−

x
2

6
4

y
t

S
p

ee
d

u
p

 (
IP

S
)

Whare−C
Whare−Cs
Whare−M

Figure 9: Speedup at the application level over
heterogeneity-oblivious.

O
p

p
o

rt
u

n
it

y
 F

ac
to

r

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

b
ig

ta
b

le

ad
s−

se
rv

le
t

m
ap

s−
d

et
ec

t−
fa

ce

se
ar

ch
−

re
n

d
er

se
ar

ch
−

sc
o

ri
n

g

p
ro

to
b

u
f

d
o

cs
−

an
al

y
ze

r

sa
w

−
co

u
n

tw

y
o

u
tu

b
e−

x
2

6
4

y
t 0

Figure 10: Opportunity factor of each application.

Whare-Map for the Google testbed experiment. Among
four scoring policies of Whare-Map, we achieve the best
performance when considering both machine and co-location
heterogeneity (Whare-MCs), which improves the overall nor-
malized IPS of the entire WSC by 18% over the heterogeneity-
oblivious mapping (from 0.72x to 0.85x) and 37% over the
worst case mapping. Also, in this experiment, Whare-M
performs comparably well as Whare-MCs. This indicates
that there is a significant performance benefit when consid-
ering the machine heterogeneity. Meanwhile, when only co-
location effects are considered to score maps (Whare-C and
Whare-Cs) we observe less overall performance gains. It is
within 1-2% of the heterogeneity-oblivious mapping result as
Whare-C and Whare-Cs focus only on the performance im-
pact of resource contention between co-located applications
on the same machine. Note that the heterogeneity-oblivious
mapping already greatly improves the IPS over the worst
case, by around 17%. When the workload is a fairly balanced
mix of contentious (memory-intensive) applications and non-
contentious (CPU intensive) applications, randomizing the
mapping can effectively decrease the chance of co-locating
two contentious applications and in turn improve over the
worst case by reducing a significant amount of co-location
penalties. These results indicate that for our Google work-
load and production machine mix in our testbed, exploit-
ing the machine heterogeneity may have a bigger impact
than considering co-location heterogeneity alone. However
the relative importance of machine and co-location hetero-
geneity depends on the machine/workload mix. We explore
those impacting factors in greater detail in Section 5.4.1.

The results for benchmark testbed, shown as the second
and third clusters of bars, are in general consistent with
the Google testbed results. For the 1-Job scenario in the
benchmark testbed, as we expect, Whare-C and Whare-
Cs do not improve performance over heterogeneity-oblivious
mapping while Whare-M and Whare-MCs perform equally
well. This is because there is no co-location in a 1-Job sce-
nario. The performance improvement of Whare-Map using
Whare-MCs over the worst case mapping is 26% and close
to 14% over heterogeneity-oblivious mapping. For the 2-
Jobs scenario (the 3rd cluster) we observe that scoring poli-
cies that only consider co-location heterogeneity (Whare-
C, Whare-Cs) are quite effective, generating up to an 8%
improvement over heterogeneity-oblivious mapping. This is
better than the performance of Whare-C in 2-Jobs scenarios
for Google applications, demonstrating that the effective-
ness of Whare-C depends on the machine/workload mix.
Only considering microarchitectural heterogeneity without
considering co-location (Whare-M) can produce 12% per-
formance benefit over the heterogeneity-oblivious mapping,
higher than Whare-C. When Whare-Map combines both

machine heterogeneity and co-location penalty heterogeneity
(Whare-MCs), the performance improvement is increased to
about 16%.

[Latency] In addition to the aggregated IPS, we also
compare the latency of all jobs in a WSC, defined as the
execution time of the longest-running job under a given job-
to-machine mapping. Figure 8 shows the latency of various
mapping policies, normalized to the latency when all jobs
run alone on their best performing machine type. Inter-
estingly, although the heterogeneity-oblivious mapping can
improve the average IPS performance, it performs equally
poorly as the worst mapping for improving latency. In this
experiment our Whare-Map improves the job placement of
the slowest job resulting in lower overall latency. Again,
Whare-MCs performs the best, andWhare-M performs com-
parably well.

[Opportunity Factor] We further examine the perfor-
mance improvement of each application and compare it with
the estimation by the opportunistic factor (Section 3.3).
Figure 9 presents the performance improvement at the ap-
plication level from the 2-Jobs scenario with 500 machines
and 1000 applications for the Google testbed as in Figures 7
and 8. The y-axis shows each application type’s performance
using Whare-Map, normalized to each type’s average per-
formance in a heterogeneity-oblivious mapping. This figure
demonstrates that application types have varying amounts
of performance benefit fromWhare-Map. For example, while
there is a 16%-19% performance improvement overall, docs-
analyzer, which is sensitive to both microarchitectural and
co-location heterogeneity, achieves a 80% performance im-
provement over heterogeneity-oblivious mapping.

There are also applications that suffer performance degra-
dation. However, as shown in the figure, the performance
improvement greatly outweighs these degradations. In the
cases where machine heterogeneity is considered (Whare-M,
and Whare-MCs), these degradations are negligible. Fig-
ure 10 presents the opportunity factor (OF) of each ap-
plication, calculated using Equation 1 and Equation 2 in
Section 3.3. As the corresponding Figures 9 and 10 show,
OF is an effective metric in correctly identifying how sen-
sitive various applications are to heterogeneity. However,
not all of the application-level opportunity is realized. Re-
member that mapping to exploit WSC heterogeneity is a
constraint optimization problem. As a result, not all ap-
plications can be mapped to their individual optimal situ-
ations to achieve the maximum performance improvement.
For example, docs-analyzer has a slightly better OF than
bigtable and they both prefer the Westmere platform, so
as the “preferred” Westmeres in a WSC are consumed by
docs-analyzer, bigtable’s mapping options are reduced.

Keep in mind that Whare-Map and OF serve different

 1.1x

 1.15x

 1.2x

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

S
p
ee

d
u
p
 (

IP
S

)

 0.95x

 1x

 1.05x

Figure 11: Performance improvement from Whare-

Map over the currently deployed mapper in produc-
tion

purposes. While Whare-Map exploits heterogeneity, OF is
a predictor as to how applications will be affected by hetero-
geneity. OF is a much needed metric for WSC operators for
understanding a key property of the applications within the
eco-system of the WSC.

5.3 Whare-Map in the Wild
Lastly, we employWhare-Map on production performance

profiles to study the potential performance improvement
when exploiting heterogeneity in the wild for live produc-
tion WSCs. We conducted our evaluation in the same 10
randomly selected WSCs shown in Table 1. These WSCs
present various levels of machine heterogeneity. We have
collected detailed Google-Wide Profiling (GWP) [27] profiles
of around 100 job types running across these WSCs con-
sisting of numerous machines in the wild. These jobs span
most of Google’s main products, including websearch. Using
the GWP profiles, we conducted a postmortem Whare-Map
analysis to re-map jobs to machines and calculate the ex-
pected performance improvement. Firstly, instructions per
cycle (IPC) samples are derived from GWP profiles. We
use cycle and instruction samples collected using hardware
performance counters by GWP over a fixed period of time,
aggregated per job and per machine type. IPS (instructions
per second) for each application on each machine type is then
computed by normalizing the IPC by the clock rate. These
IPS samples are used for map scoring. Here we use Whare-M
policy, considering only microarchitectural heterogeneity.

Using ourWhare-Map approach, we produce an intelligent
job-to-machine mapping in a matter of seconds at the scale
of thousands of machines of multiple types, over a hundred
job types and the performance profiles of over the course
of a month of operation. Figure 11 shows the calculated
performance improvement when using Whare-Map over the
currently deployed mapping in 10 of Google’s active WSCs.
Even though some major applications are already mapped
to their best platforms through manual assignment, we have
measured significant potential improvement of up to 15%
when intelligently placing the remaining jobs. This perfor-
mance opportunity calculation based on this paper is now
an integral part of Google’s WSC monitoring infrastructure.
Each day the number of ‘wasted cycles’ due to inefficiently
mapping jobs to the WSC is calculated and reported across
each of Google’s WSCs world wide.

5.4 Factors Impacting Heterogeneity in WSCs
The rationale behind the homogeneity assumption stems

from a lack of understanding on how the gradual introduc-
tion of diversity in a WSC impacts performance variability.
In this section, we perform a study of how varying the diver-
sity in a WSC affects the performance opportunity from the
heterogeneity available in the WSC along two dimensions,

application mix and machine platform mix. We then present
insights into how these two factors affect server purchase op-
tions as well as the selection of the appropriate map scoring
policies.

5.4.1 Impact of Workload Mix on Heterogeneity
In this section, we evaluate a variety of workload mixes

to investigate how workload mixes impact the performance
improvement when exploiting the heterogeneity. We par-
titioned our 9 Google applications into two types, mem-
ory intensive (and thus likely to be contentious) and CPU
intensive. We also selected the top 8 memory intensive
applications and the top 8 CPU intensive applications from
SPEC 2006. As shown in Table 6, we constructed 7 types
of workloads using our classification. We then conducted
various job mapping experiments on these workloads to in-
vestigate the performance benefit of using Whare-Map over
the heterogeneity-oblivious mapping. All experiments on
the Google testbed use a WSC of 500 machines evenly dis-
tributed from 3 machine types listed in Table 3 (166 Clover-
town Xeon, 166 Istanbul Opteron, 168 Westmere Xeon).
Similarly, the benchmark testbed experiments use 400 ma-
chines composed of 3 types of microarchitectures listed in
Table 4 (133 Core i7s, 133 Core 2s, 134 Phenom X4s).

Figures 12 and 13 present our experimental results for the
Google and benchmark testbed, respectively. We conducted
a 2-jobs-per-machine experiment using Google testbed and
both 1-Job and 2-Jobs scenarios for the benchmark testbed.
In each figure, the x-axis shows each experiment’s configura-
tions. For example, in Figure 13, the notation 1J-MostlyCPU
indicates the 1-job-per-machine scenario and the workload
is composed of 3

4
CPU intensive benchmarks and 1

4
mem-

ory intensive benchmarks. The y-axis shows Whare-Map’s
performance improvement compared to the heterogeneity-
oblivious mapping. The performance metric is the overall
aggregated IPS of all machines. As the figures show, the
amount of performance benefit of using Whare-Map to take
advantage of heterogeneity varies when the workload mix
varies. Specifically, we have the following observations and
insights.

1) The performance benefit potential is smaller for CPU
intensive workloads than memory intensive workloads or
mixed workloads. Figure 12 shows that for Google experi-
ments, the workload of mostly CPU intensive applications
achieves just over a 10% improvement over the heterogeneity-
oblivious mapping, as opposed to close to 15% for memory
intensive workloads. In Figure 13, both 1J-CPU and 2J-
CPU experiments have relatively low performance improve-
ment (less than 5%). This indicates that for CPU intensive
benchmarks, the microarchitectural heterogeneity is smaller.
For our workloads and the 2 sets of microarchitectures (Ta-
bles 3 and 4), much of the performance variability and
opportunity are in the memory subsystem hetero-
geneity.

2) In general, more diverse workloads, such as workloads
composed of both CPU and memory intensive benchmarks,
have higher performance improvement potential for using
Whare-Map than workloads composed of pure CPU or pure
memory intensive benchmarks. For example, in Figure 13,
for the 1-Job scenarios (left half of the figure), Whare-MCs
has more performance improvement over the heterogeneity-
oblivious mapping for 1J-mix (15%) than 1J-CPU (3%) or
1J-Memory (10%). Similarly, for the 2-Jobs scenarios (right
half of Figure 13), when the workload is composed of only
CPU intensive benchmarks (2J-CPU), the performance im-
provement is much smaller (4%) than that for 2J-mix (14%),
which has a more heterogeneous workload.

3) Considering machine heterogeneity only (Whare-M) is
fairly competitive with considering both machine and co-

Workload Application Types

Google Mostly Mem bigtable, ads-servlet, search-render, docs-analyzer
Google Mostly CPU maps-detect-face, search-scoring, protobuf, saw-countw, youtube-x264yt
Memory lbm, libquantum, mcf, milc, omnetpp, soplex, sphinx, xalancbmk
CPU hmmer, namd, povray, h264ref, gobmk, dealII, sjeng, perlbench

Mix (1
2
Mem/ 1

2
CPU) lbm, libquantum, mcf, milc, hmmer, namd, povray, h264ref

Mostly Mem (3
4
Mem/ 1

4
CPU) lbm, libquantum, mcf, milc, omnetpp, soplex, hmmer, namd

Mostly CPU (3
4
CPU/ 1

4
Mem) hmmer, namd, povray, h264ref, gobmk, dealII, lbm, libquantum

Table 6: Workload Mixes

 0.95x

 1x

 1.05x

 1.1x

 1.2x

 1.15x

G
o

o
g

M
o

st
ly

M
em

G
o

o
g

M
o

st
ly

C
p

u

S
p

ee
d

u
p

 o
v

er
 R

an
d

o
m

Whare−C
Whare−Cs
Whare−M
Whare−MCs

Figure 12: Impact of varying workload mix on
available heterogeneity for the Google testbed. Per-
formance is normalized to heterogeneity-oblivious
mapping (higher is better)

S
p

ee
d

u
p

 o
v

er
 R

an
d

o
m

Whare−C
Whare−Cs
Whare−M
Whare−MCs

 0.95x

 1x

 1.05x

 1.1x

 1.15x

 1.2x

1
J−

M
em

1
J−

C
p

u

1
J−

M
ix

1
J−

M
o

st
ly

M
em

1
J−

M
o

st
ly

C
p

u

2
J−

M
em

2
J−

C
p

u

2
J−

M
ix

2
J−

M
o

st
ly

M
em

2
J−

M
o

st
ly

C
p

u

Figure 13: Impact of varying workload mix
on available heterogeneity for SPEC bench-
mark testbed. Performance is normalized to
heterogeneity-oblivious mapping.

location heterogeneity (Whare-MCs) in most scenarios. On
the other hand, considering co-location only (Whare-Cs)
does not outperform considering machine heterogeneity only
(Whare-M) in any scenario. One reason is that for both our
Google and benchmark testbeds, the performance variability
due to microarchitectural heterogeneity is as high as 3.5x
and 2x, respectively, while the performance variability due
to the penalty of co-locating two jobs is only around 30%
(Figures 2 and 3). However, in the next section we will fur-
ther investigate the performance difference between Whare-
MCs and Whare-M when the amount of microarchitectural
heterogeneity changes.

5.4.2 Impact of Machine Mix on Heterogeneity
In addition to the workload mix, microarchicture mix also

has a significant impact on the amount of the heterogeneity
in a WSC. In this section we study the impact of varying
microarchitecture mix on the performance improvement of
Whare-Map. We conducted experiments using 6 types of
machine mixes for the Google testbeds. The 6 types in-
clude: an entire WSC composed of all Clovertown Xeon, all
Istanbul Opteron, all Westmere Xeon, 1

2
Clovertown + 1

2

Istanbul, 1

2
Instanbul + 1

2
Westmere and 1

2
Clovertown +

1

2
Westmere. The workloads used for the Google testbed is

composed of all 9 key Google applications (Table 2). We also
conducted similar experiments on the benchmark testbed,
using a a workload composed of mostly memory intensive
applications (Table 6).
Figures 14 and 15 present the results for the Google and

benchmark testbed, respectively. Similar to previous figures
in Section 5.4.1, in each figure, the y-axis shows the per-
formance improvement of Whare-Map using four different
scoring policies over the heterogeneity-oblivious mapping for
different machine mixes.

The first observation from these two figures is that even
mixes of machines from a similar generation present a signif-
icant performance opportunity for exploiting heterogeneity.
In Figure 14, even for machine mixes composed of only 2

types of machines, Whare-Map generates significant perfor-
mance improvement over heterogeneity-oblivious mapping.
For Clovertown and Istanbul, which have similar average
performance (Figure 2), the performance improvement of
their mix is also significant (more than 10%). Similar obser-
vations can be made for the benchmark testbed as shown in
Figure 15.
It is also important to note that for some machine mixes,

the benefit of using Whare-MCs over Whare-M is signifi-
cant. For example, in the 2J-Core 2+Phenom X4 scenario
shown in Figure 15 (the last cluster of bars), Whare-MCs’s
performance improvement over the heterogeneity-oblivious
mapping is 14%, significantly higher than the Whare-M’s
8% improvement. This is different from the observations we
made in Section 5.4.1 that often Whare-M performs sim-
ilarly with Whare-MCs. The reason for this difference is
that there is less microarchitectural heterogeneity (only 2
types of machines in the mix) in these experiments than
those in Section 5.4.1 and thus the co-location heterogeneity
becomes more important. This observation demonstrates
that although the microarchitectural heterogeneity is gen-
erally dominantly important, the amount of additional per-
formance benefit when considering co-location is largely de-
termined by the workloads mix and the machine mix. We
discuss more on this topic in Section 5.6.

5.5 Which Servers to Purchase?
Important questions arises when making server purchas-

ing decisions: Is heterogeneity in a WSC desirable or not?
Should it be increased or decreased?

The heterogeneity study in this paper indicates that when
making such heterogeneous vs. homogeneous decisions, sim-
ply comparing servers’ average performance for a workload
suite is insufficient and may be misleading. Instead, we
advocate using Whare-Map to estimate the performance of
WSCs with various machine mixes. In fact, Whare-Map
makes the heterogeneous WSC a potentially more cost ef-

W
es

t

C
lo

v
er

+
Is

ta
n

Is
ta

n
+

W
es

t

W
es

t+
C

lo
v

er

S
p

ee
d

u
p

 o
v

er
 R

an
d

o
m

Whare−C
Whare−Cs
Whare−M
Whare−MCs

 0.95x

 1x

 1.05x

 1.1x

 1.15x

 1.2x

C
lo

v
er

Is
ta

n

Figure 14: Impact of varying machine mix on
heterogeneity for the Google testbed. Perfor-
mance is normalized to heterogeneity-oblivious
mapping(higher is better).

Whare−Cs
Whare−M
Whare−MCs

 0.95x

 1x

 1.05x

 1.1x

 1.15x

 1.2x

1
J−

C
i7

1
J−

C
2

1
J−

P
X

4

1
J−

C
i7

+
C

2

1
J−

C
i7

+
P

X
4

1
J−

C
2

+
P

X
4

2
J−

C
i7

2
J−

C
2

2
J−

P
X

4

2
J−

C
i7

+
C

2

2
J−

C
i7

+
P

X
4

2
J−

C
2

+
P

X
4

S
p

ee
d

u
p

 o
v

er
 R

an
d

o
m

Whare−C

Figure 15: Impact of varying machine mix on
heterogeneity for SPEC benchmark testbed. Per-
formance is normalized to heterogeneity-oblivious
mapping.

Whare−MCs

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Clover Istan West Clover+Istan Istan+West West+Clover

N
o

rm
a
li

z
e
d

 I
P

S

Worst
Oblivious
Whare−C
Whare−Cs
Whare−M

Figure 16: Normalized performance of various op-
tions of WSC machine composition(higher is bet-
ter).

fective (better performance/dollar) option than purely ho-
mogeneous WSCs.

To illustrate that, Figure 16 shows the performance of
several WSCs composed of various machine mixes. The
experiments are conducted using the same workload as in
Figure 14, composed of all 9 Google applications. In contrast
to Figure 14, the performance of all experiments here is nor-
malized to a single baseline, the aggregate IPS of all appli-
cations, each running alone on its best performing platform.
The baseline thus is an upper bound on performance. This
facilitates the comparison of relative performance between
WSCs. The key observation in this graph is highlighted
when comparing the all Istan cluster with the half Istan
and half Clover clusters. The Istan cluster is more expen-
sive as it is composed of the newer generation. However,
when using Whare-Map to place jobs where they run best,
the cheaper cluster, Istan+Clover, performs just as well (and
indeed a bit better as some jobs actually prefer the Clover
machine).

5.6 Revisiting Map Scoring
In addition to the findings discussed in the above sections,

this study also leads to a number of insights on how to select
the scoring policy:

1)No free lunch. Among all four scoring policies, Whare-
MCs always delivers the best performance improvement.
However, it also requires the most amount of profiling to
be effective.

2) Whare-M: big bang for your buck. As this sec-
tion shows, in most settings, Whare-M generates signifi-
cant performance improvement over heterogeneity-oblivious
mapping with a very small amount of profiling. The profil-
ing complexity is only |A|x|M | as shown in Table 5. This
indicates that Whare-M can be adopted as an easy and effec-
tive first step for Whare-Map and can be triggered as soon

as GWP finishes profiling the basic machine heterogeneity
information.

3) Whare-MCs: gradually improve over Whare-
M. As Section 5.4.2 shows, depending on the workload and
machine mixes, Whare-MCs may also improve over Whare-
M significantly, delivering extra performance benefit, espe-
cially when there is much co-location penalty variability.
Therefore, Whare-MCs can be used to gradually improve
over the mapping of Whare-M, as the GWP accumulates
more information regarding co-location.

4) Continuous Knowledge Refinement It is impor-
tant to remember that although the profiling complexity of
Whare-MCs appears high (Table 5), GWP runs continuously
throughout the lifetime of the WSC probing each machine
once every minute. As the scale of the WSC increases to
thousands of machines the rate at which the profiling infor-
mation becomes robust also increases.

6. RELATED WORK
Perhaps the most closely related works are those focused

on heterogeneity in datacenters that have appeared in both
the systems and architecture communities [2, 9, 12, 13, 36].
Our work is complimentary to these works in that the as-
sumptions that underlie these works apply to systems pro-
viding utility computing and/or does not leverage in pro-
duction continuous profiling subsystems such as GWP. In
contrast to our work, datacenters providing utility com-
puting can not make the assumption that applications and
services running in these datacenters are known a priori.
Also, in contrast to the prior work on MapReduce, our work
extends the core architecture of WSCs at the abstraction
layer closest to the underlying hardware, is general across
various programming paradigms, and leverages continuous
profiling subsystems as opposed to performing trials.

There is much related research on datacenters focused on
improving energy efficiency [1, 3, 6, 16, 19, 20, 22, 24, 25, 34].
There has also been work on scheduling in datacenters [17],
enabling QoS-aware control in datacenters [23, 29, 31], and
programming datacenters [10]. A recent work that shares
some similarities with our work presents PROPHET, a goal-
oriented provisioning infrastructure that tunes the WSC to
satisfy the needs of particular end users [33]. The research
work that is closest to ours discusses a scheduling policy
which uses a linear programming problem that maximizes
system capacity to map an application across a desktop
grid [4]. This work focuses on distributed desktop computers
and does not consider the interaction between microarchi-
tectural and co-location heterogeneity. There has been a
significant amount work in domain of heterogeneous multi-
core that is also related to this work such as the work by

Winter et al. [32] that investigated the task of scheduling
for “unpredictably” heterogeneous multicore processors due
to process variation.

7. CONCLUSION
In this work, we examine the WSC as a heterogeneous

system and show that emergent heterogeneity must be con-
sidered when mapping jobs to machines. We investigate
microarchitectural heterogeneity in the WSC and find that
even when considering platforms from competing genera-
tions, there is significant and idiosyncratic variability across
applications; and, application co-location is particularly im-
portant when considering the heterogeneous WSC. In this
work, we also demonstrate how WSC heterogeneity can be
exploited and investigate how varying the application mix
as well as the machine mix can impact performance. We
find that for applications that are sensitive to variations in
microarchitecture and co-runners, we observe a performance
improvement of up to 80% when employing our approach
over current random scheduling techniques. Even in a WSC
composed entirely of state-of-the art machines, we can im-
prove the overall performance by 18%. We also present a
case study from a live WSC confirming this result, demon-
strating up to 15% performance improvement.

8. REFERENCES
[1] D. Abts, M. Marty, P. Wells, P. Klausler, and H. Liu. Energy

proportional datacenter networks. ISCA ’10, Jun 2010.

[2] F. Ahmad, S. T. Chakradhar, A. Raghunathan, and T. N.
Vijaykumar. Tarazu: optimizing mapreduce on heterogeneous
clusters. ASPLOS ’12, pages 61–74, New York, NY, USA, 2012.
ACM.

[3] F. Ahmad and T. Vijaykumar. Joint optimization of idle and
cooling power in data centers while maintaining response time.
ASPLOS ’10, Mar 2010.

[4] I. Al-Azzoni and D. Down. Dynamic scheduling for
heterogeneous desktop grids. GRID ’08, Sep 2008.

[5] G. Banga, P. Druschel, and J. C. Mogul. Resource containers: a
new facility for resource management in server systems. In
OSDI ’99, Berkeley, CA, USA, 1999. USENIX Association.

[6] L. A. Barroso, J. Dean, and U. Hölzle. Web search for a planet:
The google cluster architecture. IEEE Micro, 23(2):22 – 28,
2003.

[7] L. A. Barroso and U. Hölzle. The datacenter as a computer: An
introduction to the design of warehouse-scale machines.
Synthesis Lectures on Computer Architecture, pages 1–120,
Sep 2009.

[8] L. A. Barroso and P. Ranganathan. Guest editors’ introduction:
Datacenter-scale computing. IEEE Micro, 30:6–7, 2010.

[9] J. Burge, P. Ranganathan, and J. Wiener. Cost-aware
scheduling for heterogeneous enterprise machines (cash’em).
CLUSTER ’07, Sep 2007.

[10] S. Bykov, A. Geller, G. Kliot, J. Larus, R. Pandya, and
J. Thelin. Orleans: A framework for cloud computing. Technical
Report MSR-TR-2010-159, Microsoft Research, November 2010.

[11] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. Gruber. Bigtable: a
distributed storage system for structured data. OSDI ’06, Nov
2006.

[12] B.-G. Chun, G. Iannaccone, G. Iannaccone, R. Katz, G. Lee,
and L. Niccolini. An energy case for hybrid datacenters.
SIGOPS Oper. Syst. Rev., 44(1):76–80, Mar. 2010.

[13] C. Delimitrou and C. Kozyrakis. Paragon: QoS-Aware
Scheduling for Heterogeneous Datacenters. In Proceedings of
the Eighteenth International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), March 2013.

[14] EPA. Epa report to congress on server and data center energy
efficiency. Technical report, U.S. Protection Agency, 2007.

[15] J. Hamilton. Internet-scale service infrastructure efficiency.
SIGARCH Comput. Archit. News, 37(3):232–232, 2009.

[16] T. Heath, B. Diniz, E. V. Carrera, W. Meira, Jr., and
R. Bianchini. Energy conservation in heterogeneous server
clusters. In Proceedings of the tenth ACM SIGPLAN

symposium on Principles and practice of parallel
programming, PPoPP ’05, pages 186–195, New York, NY, USA,
2005. ACM.

[17] R. Huang, H. Casanova, and A. Chien. Automatic resource
specification generation for resource selection. SC ’07, Nov
2007.

[18] K. Lim, P. Ranganathan, J. Chang, C. Patel, T. Mudge, and
S. Reinhardt. Understanding and designing new server
architectures for emerging warehouse-computing environments.
In Proceedings of the 35th Annual International Symposium
on Computer Architecture, ISCA ’08, pages 315–326,
Washington, DC, USA, 2008. IEEE Computer Society.

[19] J. Mars, L. Tang, and R. Hundt. Heterogeneity in
“homogeneous” warehouse-scale computers: A performance
opportunity. IEEE Computer Architecture Letters, 2011.

[20] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa.
Bubble-up: Increasing utilization in modern warehouse scale
computers via sensible co-locations. In MICRO ’11:
Proceedings of The 44th Annual IEEE/ACM International
Symposium on Microarchitecture, New York, NY, USA, 2011.
ACM.

[21] A. K. Mishra, J. L. Hellerstein, W. Cirne, and C. R. Das.
Towards characterizing cloud backend workloads: insights from
google compute clusters. SIGMETRICS Perform. Eval. Rev.,
37:34–41, March 2010.

[22] R. Nathuji, C. Isci, and E. Gorbatov. Exploiting platform
heterogeneity for power efficient data centers. ICAC ’07:
Proceedings of the Fourth International Conference on
Autonomic Computing, Jun 2007.

[23] R. Nathuji, A. Kansal, and A. Ghaffarkhah. Q-clouds:
managing performance interference effects for qos-aware clouds.
EuroSys ’10, Apr 2010.

[24] S. Pelley, D. Meisner, P. Zandevakili, T. Wenisch, and
J. Underwood. Power routing: dynamic power provisioning in
the data center. ASPLOS ’10, Mar 2010.

[25] V. Reddi, B. Lee, T. Chilimbi, and K. Vaid. Web search using
mobile cores: quantifying and mitigating the price of efficiency.
ISCA ’10, Jun 2010.

[26] C. R. Reeves, editor. Modern heuristic techniques for
combinatorial problems. John Wiley & Sons, Inc., New York,
NY, USA, 1993.

[27] G. Ren, T. Moseley, E. Tune, S. Rus, and R. Hundt.
Google-wide profiling: A continuous profiling infrastructure for
datacenters. IEEE Micro, 2010.

[28] S. M. Sait and H. Youssef. Iterative Computer Algorithms with
Applications in Engineering: Solving Combinatorial
Optimization Problems. IEEE Computer Society Press, Los
Alamitos, CA, USA, 1999.

[29] L. Tang, J. Mars, and M. L. Soffa. Compiling for niceness:
Mitigating contention for qos in warehouse scale computers. In
CGO ’12: Proceedings of the 2012 International Symposium
on Code Generation and Optimization, New York, NY, USA,
2012. ACM.

[30] L. Tang, J. Mars, N. Vachharajani, R. Hundt, and M. L. Soffa.
The impact of memory subsystem resource sharing on
datacenter applications. In Proceeding of the 38th annual
international symposium on Computer architecture, ISCA ’11,
pages 283–294, New York, NY, USA, 2011. ACM.

[31] L. Tang, J. Mars, W. Wang, T. Dey, and M. L. Soffa. Reqos:
Reactive static/dynamic compilation for qos in warehouse scale
computers. In ASPLOS ’13: Proceedings of the 18th
International Conference on Architectural Support for
Programming Languages and Operating Systems. ACM, 2013.

[32] J. A. Winter and D. H. Albonesi. Scheduling algorithms for
unpredictably heterogeneous cmp architectures. DSN 2008,
pages 42 – 51, 2008.

[33] D. Woo and H.-H. Lee. Prophet: goal-oriented provisioning for
highly tunable multicore processors in cloud computing.
SIGOPS Operating Systems Review, 43(2), Apr 2009.

[34] H. Yang, A. Breslow, J. Mars, and L. Tang. Bubble-pipo:
Precise on- line qos management for increased utilization in
warehouse scale computers. In ISCA ’13: Proceedings of the
40th annual International Symposium on Computer
Architecture. IEEE/ACM, 2013.

[35] S. Yeo and H.-H. Lee. Using mathematical modeling in
provisioning a heterogeneous cloud computing environment.
Computer, 44(8):55 –62, aug. 2011.

[36] M. Zaharia, A. Konwinski, A. Joseph, R. Katz, and I. Stoica.
Improving mapreduce performance in heterogeneous
environments. OSDI’08, Dec 2008.

	Introduction
	Background
	Job Placement in WSCs
	Live Monitoring in WSCs

	Heterogeneity in Modern WSCs
	Characterization Methodology
	Investigating Heterogeneity
	OF: An Opportunity Metric

	Whare-Map
	Overview
	Whare-Map: An Optimization Problem
	Map Scoring

	Evaluating Whare-Map
	Experimental Methodology
	Google and Benchmark Testbeds
	Whare-Map in the Wild
	Factors Impacting Heterogeneity in WSCs
	Impact of Workload Mix on Heterogeneity
	Impact of Machine Mix on Heterogeneity

	Which Servers to Purchase?
	Revisiting Map Scoring

	Related Work
	Conclusion
	References

