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Warehouse Scale Computers 

n Host large-scale Internet services 

“Datacenters have become as 
vital to the functioning of 
society as power stations” 

- The Economist
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Over-provisioning Leads to Low Utilization 
n Status quo

n Over-provisioning to ensure quality of service for 
latency-sensitive applications

n Low machine utilization
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ABSTRACT
As much of the world’s computing continues to move into
the cloud, the overprovisioning of computing resources to
ensure the performance isolation of latency-sensitive tasks,
such as web search, in modern datacenters is a major con-
tributor to low machine utilization. Being unable to accu-
rately predict performance degradation due to contention for
shared resources on multicore systems has led to the heavy
handed approach of simply disallowing the co-location of
high-priority, latency-sensitive tasks with other tasks. Per-
forming this precise prediction has been a challenging and
unsolved problem.

In this paper, we present Bubble-Up, a characteriza-
tion methodology that enables the accurate prediction of
the performance degradation that results from contention
for shared resources in the memory subsystem. By using a
bubble to apply a tunable amount of “pressure” to the mem-
ory subsystem on processors in production datacenters, our
methodology can predict the performance interference be-
tween co-locate applications with an accuracy within 1%
to 2% of the actual performance degradation. Using this
methodology to arrive at “sensible” co-locations in Google’s
production datacenters with real-world large-scale applica-
tions, we can improve the utilization of a 500-machine clus-
ter by 50% to 90% while guaranteeing a high quality of ser-
vice of latency-sensitive applications.

Categories and Subject Descriptors
B.3.3 [Hardware]: Memory Structures—Performance Anal-
ysis and Design Aids; C.4 [Computer Systems Orga-
nization]: Performance of Systems—Design studies; D.4.8
[Operating Systems]: Performance—measurements, mon-
itors

General Terms
Design, Performance, Measurement
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Figure 1: Some co-locations violate web search’s
90% QoS threshold. The inability to precisely pre-
dict this performance interference leads to disallow-
ing co-location for web search and consequently, low
machine utilization.

1. INTRODUCTION
“Warehouse scale computers” (WSCs) [12,22] house large

scale web applications and cloud services. The cost of con-
struction and operation of these datacenters ranges from
tens to hundreds of millions of dollars. As more computing
moves into the cloud, it is becoming exceedingly important
to leverage the resources in WSCs as efficiently as possi-
ble. However, the utilization of the computing resources in
modern WSCs remains low, often not exceeding 20% [2].
Each machine in the datacenter house numerous cores, of-

ten 4 to 8 cores per socket, and 2 to 4 sockets per machine.
However, in light of the significant potential for parallelism
on a single machine, there are a number of resources shared
among cores. This sharing can result in performance inter-
ference across-cores, negatively and unpredictably impact-
ing the quality of service (QoS) of user-facing and latency-
sensitive application threads [36]. To avoid the potential for
interference, co-location is disallowed for latency-sensitive
applications, leaving cores idle, and resulting in an overpro-
visioning that negatively impacts the utilization of the entire
datacenter.
This overprovisioning is often unnecessary, as co-locations

may or may not result in significant performance interfer-
ence. Figure 1 demonstrates this uncertainty. In this fig-
ure, we show the performance ( 1

latency
), normalized to solo

execution, of a key user-facing component of Google’s web
search when co-located with other Google workloads on a
single socket. The horizontal line shows the maximum al-
lowable performance interference. The co-location of some
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applications, leaving cores idle, and resulting in an overpro-
visioning that negatively impacts the utilization of the entire
datacenter.
This overprovisioning is often unnecessary, as co-locations
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execution, of a key user-facing component of Google’s web
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n Uncertain QoS interference leads to over-
provisioning and ultimately, expensive, low 
utilization
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Bubble-Up [Mars et al. Micro ’11]

n State-of-the-art

n Static profiling to precisely predict the QoS interference 
and degradation for latency-sensitive applications 

n 2% prediction error for large-scale applications on real 
hardware

n Insights: 

n Black box approach on real systems instead of 
detailed HW resource component modeling

n Capture application’s sensitivity to resource 
contention and aggressiveness separately
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Limitations of Bubble-Up

n Limitation 1 - Inability to adapt, which significantly limits 
utilization opportunities
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n Limitation 1 - Inability to adapt, which significantly limits 
utilization opportunities
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n Limitation 1 - Inability to adapt, which significantly limits 
utilization opportunities
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Bubble-Flux
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Bubble-Flux
n Instantaneous measurement of the application’s sensitivity for each 

live server in production

n Real time instead of static profiling

n Adapt to load changes: reflect application’s sensitivity at the current load 
level

n Scale beyond pairwise

n Better prediction-based “safe” co-location identification to maximize 
utilization
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Bubble-Flux
n Instantaneous measurement of the application’s sensitivity for each 

live server in production

n Real time instead of static profiling

n Adapt to load changes: reflect application’s sensitivity at the current load 
level

n Scale beyond pairwise

n Better prediction-based “safe” co-location identification to maximize 
utilization

n Continuous online precise QoS management after the task is 
mapped

n Adapt to load, phase, input changes

n Handles unknown applications and beyond pairwise colocations
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Bubble-Flux Overview

n Dynamic Bubble - Dynamically probe the machines to measure the 
latency-sensitive application’s instantaneous sensitivity to the pressure on 
the shared hardware resources 
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Bubble-Flux Overview

n Dynamic Bubble - Dynamically probe the machines to measure the 
latency-sensitive application’s instantaneous sensitivity to the pressure on 
the shared hardware resources 

n Online Flux Engine - Continuous QoS monitoring and dynamic 
throttling of batch applications (Phase-in/Phase-out) for QoS management

Latency sensitive

Bubble 
Probe

QoS 
Monitor

 Dynamic Bubble 
 Engine 

PiPo

Batch

Flux Engine

Bubble-Flux Runtime

Batch

Memory Subsystem

Sunday, July 21, 13



server

Dynamic Bubble

tasks
...

server
serverserver

...

...

Cluster Manager

Sunday, July 21, 13



server

Dynamic Bubble

tasks
...

server
serverserver

Latency 
sensitive

Bubble 
Probe

QoS 
Monitor

 Dynamic Bubble 

Batch

Flux Engine

Bubble-Flux 

Memory Subsystem

Batch
...

...

Cluster Manager

Sunday, July 21, 13



server

Dynamic Bubble

tasks
...

server
serverserver

Latency 
sensitive

Bubble 
Probe

QoS 
Monitor

 Dynamic Bubble 

Batch

Flux Engine

Bubble-Flux 

Memory Subsystem

Batch
...

...

Instantaneous
Sensitivity 

CurveInterference 
Prediction

Cluster Manager

Sunday, July 21, 13



server

Dynamic Bubble
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Probe
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 Dynamic Bubble 

Batch
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Bubble-Flux 
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Batch
...

...

Instantaneous
Sensitivity 

CurveInterference 
Prediction

Cluster Manager

n Reflect sensitivity at 
the current load 

n Increase utilization 
opportunities

n Beyond pairwise

n Low-overhead
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Challenges and Design

n Challenges

n To generate a complete sensitivity curve with minimum runtime 
overhead and interference

n Design: rely on the Flux engine to control the 
interference caused by the dynamic bubble

n Phase-in and Phase-out (PiPo)

n Measure the QoS delta when bubble is phased in and  phased 
out with controllable interference (e.g., 2%)

n Generate sensitivity curve without violating QoS target
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Online Flux Engine

n Continuous QoS monitoring after tasks are mapped 

n PiPo (Phase-in/Phase-out): Dynamic throttling of batch 
applications for QoS management of latency-sensitive 
application
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Online Flux Engine

n Continuous QoS monitoring after tasks are mapped 

n PiPo (Phase-in/Phase-out): Dynamic throttling of batch 
applications for QoS management of latency-sensitive 
application

Latency 
sensitive

QoS 
Monitor

Batch

Flux Engine
Bubble-Flux 

Memory Subsystem

Batch

PiPo
Dynamic 
Bubble

n Respond to execution 
phase changes, input 
changes, and load 
variations

n Scale up beyond pair-
wise, work with unknown 
applications
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n Monitor: hardware 
performance counters 
(IPC)

n Phase-in/Phase-out: 
SIGSTOP and 
SIGCONT

n Phase-in/phase-out ratio 
in the next iteration:

Online Flux Engine

Algorithm 1: Flux Engine

Input: ALS a latency sensitive application,
B a set of batch applications,
QoStarget the target QoS value

1 i = 0
2 phaseIn Ratioi = 0.5
3 phaseOut Ratioi = 0.5
4 phase window = 250ms

5 while ALS.isAlive() do
6 phaseOut interval = phaseOut Ratioi ∗ phase window;
7 Phase out batch applications in B for phaseOut interval

ms;

8 IPCpi
i = measure ALS IPC(phaseOut interval);

/* Measure the latency sensitive application’s IPC
during the B’s Phase-Out period */

9 End Phase-out period for all batch applications;

10 phaseIn interval = phaseIn Ratioi ∗ phase window;
11 Phase in batch applications in B for phaseIn interval ms;
12 IPCpo

i = measure ALS IPC(phaseIn interval);
13 End phase-in period for all batch applications;

14 phaseIn Ratioi+1 =

update ratio(phaseIn Ratioi, IPCpo
i , IPCpi

i , QoStarget);
/* Update the Phase-in/Phase-out Ratio based on the
monitored IPC */;

15 phaseOut Ratioi+1 = 1 − phaseIn Ratioi+1;
16 i+ = 1;
17 end

QoS for a latency sensitive application during the interval i,
we utilize following equation:

QoSi =
phaseInRatioi ∗ IPCpi

i + phaseOutRatioi ∗ IPCpo
i

IPCpo
i

(1)
Using the QoS estimation calculated by Equation 1, we up-
date the next iteration’s phase-in ratio using the following
equation:

phaseInRatiopii+1 = phaseInRatiopii +
QoStarget −QoSi

QoStarget

(2)
where QoStarget is the targeted threshold where the QoS
of the latency-sensitive application is deemed satisfactory.
By taking this approach, PiPo consistently anneals to the
correct QoS value and is neither overly aggressive nor overly
conservative.

6. EVALUATION
[Setup and Methodology]We conduct our experiments

on a 2.2Ghz dual-socket Intel Xeon E5-2660 (Sandy bridge)
with 8 cores and 32GB of DRAM per socket. Each core
has a 32KB L1 private instruction cache, a 32KB L1 private
data cache, a 256 KB L2 cache, and each socket has a shared
20MB L3 cache. The OS is Ubuntu with linux kernel version
3.2.0-29.

Our workloads are shown in Table 1. We use a number
of applications from CloudSuite [15] including Web-search

and Data-serving (Cassandra) to represent our latency-
sensitive applications and a mix of SPEC CPU2006 bench-
marks and CloudSuite’s Data-analytics, a Hadoop-based
benchmark, to represent our batch applications.

6.1 Effectiveness Without A Priori Knowledge
We first evaluate the effectiveness of Bubble-Flux for en-

forcing targeted QoS without prior knowledge of applica-

with Bubble−Flux targeting 98% QoS
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Figure 5: Web-search - Normalized QoS when co-
running with batch applications shown on the X-axis
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Figure 6: Data-serving - Normalized QoS when co-
running with batch applications shown on the X-axis
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Figure 7: Media-streaming - Normalized QoS when
co-running with batch applications shown on the X-
axis

tions or profiling. In these experiments, the Flux Engine
achieves precise QoS management, meeting 95% and 98%
normalized QoS targets with 1-2% precision. Meanwhile,
the Flux Engine also provides significant gains in utilization
even in the absence of a QoS prediction provided by the
Dynamic Bubble.
Figures 5, 6 and 7 present the normalized QoS of Web-

search, Data-serving and Media-streaming respectively,
when each of them co-runs with a series of batch applica-
tions shown on the X-axis. In this experiment, the latency-
sensitive application occupies 4 cores on an 8 core chip. Each
SPEC benchmark executes 4 instances on the remaining 4
cores. Data-analytics, which is a multi-threaded Hadoop
benchmark, runs on the remaining 4 cores as a batch ap-

Algorithm 1: Flux Engine

Input: ALS a latency sensitive application,
B a set of batch applications,
QoStarget the target QoS value

1 i = 0
2 phaseIn Ratioi = 0.5
3 phaseOut Ratioi = 0.5
4 phase window = 250ms

5 while ALS.isAlive() do
6 phaseOut interval = phaseOut Ratioi ∗ phase window;
7 Phase out batch applications in B for phaseOut interval

ms;

8 IPCpi
i = measure ALS IPC(phaseOut interval);

/* Measure the latency sensitive application’s IPC
during the B’s Phase-Out period */

9 End Phase-out period for all batch applications;

10 phaseIn interval = phaseIn Ratioi ∗ phase window;
11 Phase in batch applications in B for phaseIn interval ms;
12 IPCpo

i = measure ALS IPC(phaseIn interval);
13 End phase-in period for all batch applications;

14 phaseIn Ratioi+1 =

update ratio(phaseIn Ratioi, IPCpo
i , IPCpi

i , QoStarget);
/* Update the Phase-in/Phase-out Ratio based on the
monitored IPC */;

15 phaseOut Ratioi+1 = 1 − phaseIn Ratioi+1;
16 i+ = 1;
17 end

QoS for a latency sensitive application during the interval i,
we utilize following equation:

QoSi =
phaseInRatioi ∗ IPCpi

i + phaseOutRatioi ∗ IPCpo
i

IPCpo
i

(1)
Using the QoS estimation calculated by Equation 1, we up-
date the next iteration’s phase-in ratio using the following
equation:

phaseInRatiopii+1 = phaseInRatiopii +
QoStarget −QoSi

QoStarget

(2)
where QoStarget is the targeted threshold where the QoS
of the latency-sensitive application is deemed satisfactory.
By taking this approach, PiPo consistently anneals to the
correct QoS value and is neither overly aggressive nor overly
conservative.

6. EVALUATION
[Setup and Methodology]We conduct our experiments

on a 2.2Ghz dual-socket Intel Xeon E5-2660 (Sandy bridge)
with 8 cores and 32GB of DRAM per socket. Each core
has a 32KB L1 private instruction cache, a 32KB L1 private
data cache, a 256 KB L2 cache, and each socket has a shared
20MB L3 cache. The OS is Ubuntu with linux kernel version
3.2.0-29.

Our workloads are shown in Table 1. We use a number
of applications from CloudSuite [15] including Web-search

and Data-serving (Cassandra) to represent our latency-
sensitive applications and a mix of SPEC CPU2006 bench-
marks and CloudSuite’s Data-analytics, a Hadoop-based
benchmark, to represent our batch applications.

6.1 Effectiveness Without A Priori Knowledge
We first evaluate the effectiveness of Bubble-Flux for en-

forcing targeted QoS without prior knowledge of applica-

with Bubble−Flux targeting 98% QoS
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Figure 5: Web-search - Normalized QoS when co-
running with batch applications shown on the X-axis
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Figure 6: Data-serving - Normalized QoS when co-
running with batch applications shown on the X-axis
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Figure 7: Media-streaming - Normalized QoS when
co-running with batch applications shown on the X-
axis

tions or profiling. In these experiments, the Flux Engine
achieves precise QoS management, meeting 95% and 98%
normalized QoS targets with 1-2% precision. Meanwhile,
the Flux Engine also provides significant gains in utilization
even in the absence of a QoS prediction provided by the
Dynamic Bubble.
Figures 5, 6 and 7 present the normalized QoS of Web-

search, Data-serving and Media-streaming respectively,
when each of them co-runs with a series of batch applica-
tions shown on the X-axis. In this experiment, the latency-
sensitive application occupies 4 cores on an 8 core chip. Each
SPEC benchmark executes 4 instances on the remaining 4
cores. Data-analytics, which is a multi-threaded Hadoop
benchmark, runs on the remaining 4 cores as a batch ap-
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Evaluation Objectives

n How Bubble-Flux addresses 3 limitations of 
Bubble-Up:

n L1: Unknown applications

n L2: Adapt to load/input/phase changes 

n L3: Scale beyond pair-wise

n Applying Bubble-Flux in datacenter scenarios
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Evaluation Setup

n Benchmark Suites

n Cloud suite ( Web-search, Data-serving, Data-analytics, 
Media-streaming, etc.) [Ferdman ’12] 

n SPEC CPU 2006

n Machine

n 2.2 Ghz dual-socket Intel Xeon E5-2660 (Sandy bridge) 

n 8 cores +  32GB of DRAM per socket

n 32KB L1 i-cache,  32KB L1 d-cache,  256 KB L2 cache, 
20MB L3 cache

Sunday, July 21, 13



Flux: Effectiveness w/o a priori knowledge (L1)

Table 1: Workloads
Benchmark Set up Type

Web-search Open source Nutch v1.2 [19], Tomcat v7.0.6.23 and Faban. 30 GB
index and segments, all of index terms cached in 32 GB main memory

latency-sensitive

Data-serving NoSQL data storage software for massive amount of data. Cassandra
0.7.3 [3] with 50 GB Yahoo! Cloud Serving Benchmark (YCSB) [9]
dataset

latency-sensitive

Media-streaming Darwin Streaming Server for video content. Faban load generator [4] latency-sensitive

Data-analytics MapReduce framework to perform machine learning analysis on large-
scale dataset. We use Hadoop 0.20.2 [1], running the Bayesian classifi-
cation algorithm in the Mahout 0.4 library [2] on 1GB set of Wikipedia
pages

batch

SPEC CPU2006 milc, lbm, libquantum, soplex, mcf, sphinx batch
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Figure 8: Gained utilization of benchmarks (shown
on the X-axis) when co-running with Web-search us-
ing Bubble-Flux
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Figure 9: Gained utilization of benchmarks (shown
on the X-axis) when co-running with Data-serving

using Bubble-Flux

plication. For each cluster of bars, the first bar presents
the normalized QoS of a latency-sensitive application when
co-running with the batch application without Bubble-Flux.
The second bar shows the QoS Bubble-Flux achieves when
it targets at 95% QoS for the latency-sensitive application;
and the third bar with the 98% QoS target. These figures
demonstrate that even without a priori knowledge, Bubble-
Flux can effectively achieve the QoS target with impressive
precision. The average QoS of Web-search with the Flux
Engine is 95.8% when Flux targets 95% QoS, and 98.4%
when the target is 98%, with 1% and 0.3% standard de-
viation respectively. Similarly for both Data-serving and
Media-streaming, the achieved average QoS is around 1%
above the target with less than 1% standard deviation.

Figures 8, 9 and 10 present the utilization Bubble-Flux
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Figure 10: Gained utilization of benchmarks (shown
on the X-axis) when co-running with Media-streaming

using Bubble-Flux
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Figure 11: Web-search’s normalized QoS when co-
located with libquantum

achieves for cores on which batch applications are executing
while guaranteeing the QoS as shown in Figures 5, 6 and
7. For example, 42% utilization when mcf is running with
Web-search while Bubble-Flux targets at 98% QoS indicates
four instances of mcf run at 42% rate on 4 cores in order to
enforce the QoS target for Web-search.
Figure 11 presents Web-search’s normalized QoS when

co-running with libquantum and the Bubble-Flux targets at
95% and 98% QoS respectively. The X-axis shows time. Fig-
ure 12 presents the corresponding utilization for libquantum
achieved by Bubble-Flux. Figures 11 and 12 demonstrate
that the Online Flux Engine consistently enforces high QoS
in the presence of libquantum’s phases. It is particularly
challenging to enforce the QoS when a latency-sensitive ap-
plication is co-running with libquantum because libquan-

Algorithm 1: Flux Engine

Input: ALS a latency sensitive application,
B a set of batch applications,
QoStarget the target QoS value

1 i = 0
2 phaseIn Ratioi = 0.5
3 phaseOut Ratioi = 0.5
4 phase window = 250ms

5 while ALS.isAlive() do
6 phaseOut interval = phaseOut Ratioi ∗ phase window;
7 Phase out batch applications in B for phaseOut interval

ms;

8 IPCpi
i = measure ALS IPC(phaseOut interval);

/* Measure the latency sensitive application’s IPC
during the B’s Phase-Out period */

9 End Phase-out period for all batch applications;

10 phaseIn interval = phaseIn Ratioi ∗ phase window;
11 Phase in batch applications in B for phaseIn interval ms;
12 IPCpo

i = measure ALS IPC(phaseIn interval);
13 End phase-in period for all batch applications;

14 phaseIn Ratioi+1 =

update ratio(phaseIn Ratioi, IPCpo
i , IPCpi

i , QoStarget);
/* Update the Phase-in/Phase-out Ratio based on the
monitored IPC */;

15 phaseOut Ratioi+1 = 1 − phaseIn Ratioi+1;
16 i+ = 1;
17 end

QoS for a latency sensitive application during the interval i,
we utilize following equation:

QoSi =
phaseInRatioi ∗ IPCpi

i + phaseOutRatioi ∗ IPCpo
i

IPCpo
i

(1)
Using the QoS estimation calculated by Equation 1, we up-
date the next iteration’s phase-in ratio using the following
equation:

phaseInRatiopii+1 = phaseInRatiopii +
QoStarget −QoSi

QoStarget

(2)
where QoStarget is the targeted threshold where the QoS
of the latency-sensitive application is deemed satisfactory.
By taking this approach, PiPo consistently anneals to the
correct QoS value and is neither overly aggressive nor overly
conservative.

6. EVALUATION
[Setup and Methodology]We conduct our experiments

on a 2.2Ghz dual-socket Intel Xeon E5-2660 (Sandy bridge)
with 8 cores and 32GB of DRAM per socket. Each core
has a 32KB L1 private instruction cache, a 32KB L1 private
data cache, a 256 KB L2 cache, and each socket has a shared
20MB L3 cache. The OS is Ubuntu with linux kernel version
3.2.0-29.

Our workloads are shown in Table 1. We use a number
of applications from CloudSuite [15] including Web-search

and Data-serving (Cassandra) to represent our latency-
sensitive applications and a mix of SPEC CPU2006 bench-
marks and CloudSuite’s Data-analytics, a Hadoop-based
benchmark, to represent our batch applications.

6.1 Effectiveness Without A Priori Knowledge
We first evaluate the effectiveness of Bubble-Flux for en-

forcing targeted QoS without prior knowledge of applica-

with Bubble−Flux targeting 98% QoS
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Figure 5: Web-search - Normalized QoS when co-
running with batch applications shown on the X-axis
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Figure 6: Data-serving - Normalized QoS when co-
running with batch applications shown on the X-axis
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Figure 7: Media-streaming - Normalized QoS when
co-running with batch applications shown on the X-
axis

tions or profiling. In these experiments, the Flux Engine
achieves precise QoS management, meeting 95% and 98%
normalized QoS targets with 1-2% precision. Meanwhile,
the Flux Engine also provides significant gains in utilization
even in the absence of a QoS prediction provided by the
Dynamic Bubble.
Figures 5, 6 and 7 present the normalized QoS of Web-

search, Data-serving and Media-streaming respectively,
when each of them co-runs with a series of batch applica-
tions shown on the X-axis. In this experiment, the latency-
sensitive application occupies 4 cores on an 8 core chip. Each
SPEC benchmark executes 4 instances on the remaining 4
cores. Data-analytics, which is a multi-threaded Hadoop
benchmark, runs on the remaining 4 cores as a batch ap-
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Flux: Effectiveness w/o a priori knowledge (L1)

Table 1: Workloads
Benchmark Set up Type

Web-search Open source Nutch v1.2 [19], Tomcat v7.0.6.23 and Faban. 30 GB
index and segments, all of index terms cached in 32 GB main memory

latency-sensitive

Data-serving NoSQL data storage software for massive amount of data. Cassandra
0.7.3 [3] with 50 GB Yahoo! Cloud Serving Benchmark (YCSB) [9]
dataset

latency-sensitive

Media-streaming Darwin Streaming Server for video content. Faban load generator [4] latency-sensitive

Data-analytics MapReduce framework to perform machine learning analysis on large-
scale dataset. We use Hadoop 0.20.2 [1], running the Bayesian classifi-
cation algorithm in the Mahout 0.4 library [2] on 1GB set of Wikipedia
pages

batch

SPEC CPU2006 milc, lbm, libquantum, soplex, mcf, sphinx batch
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Figure 8: Gained utilization of benchmarks (shown
on the X-axis) when co-running with Web-search us-
ing Bubble-Flux
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Figure 9: Gained utilization of benchmarks (shown
on the X-axis) when co-running with Data-serving

using Bubble-Flux

plication. For each cluster of bars, the first bar presents
the normalized QoS of a latency-sensitive application when
co-running with the batch application without Bubble-Flux.
The second bar shows the QoS Bubble-Flux achieves when
it targets at 95% QoS for the latency-sensitive application;
and the third bar with the 98% QoS target. These figures
demonstrate that even without a priori knowledge, Bubble-
Flux can effectively achieve the QoS target with impressive
precision. The average QoS of Web-search with the Flux
Engine is 95.8% when Flux targets 95% QoS, and 98.4%
when the target is 98%, with 1% and 0.3% standard de-
viation respectively. Similarly for both Data-serving and
Media-streaming, the achieved average QoS is around 1%
above the target with less than 1% standard deviation.

Figures 8, 9 and 10 present the utilization Bubble-Flux
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Figure 11: Web-search’s normalized QoS when co-
located with libquantum

achieves for cores on which batch applications are executing
while guaranteeing the QoS as shown in Figures 5, 6 and
7. For example, 42% utilization when mcf is running with
Web-search while Bubble-Flux targets at 98% QoS indicates
four instances of mcf run at 42% rate on 4 cores in order to
enforce the QoS target for Web-search.
Figure 11 presents Web-search’s normalized QoS when

co-running with libquantum and the Bubble-Flux targets at
95% and 98% QoS respectively. The X-axis shows time. Fig-
ure 12 presents the corresponding utilization for libquantum
achieved by Bubble-Flux. Figures 11 and 12 demonstrate
that the Online Flux Engine consistently enforces high QoS
in the presence of libquantum’s phases. It is particularly
challenging to enforce the QoS when a latency-sensitive ap-
plication is co-running with libquantum because libquan-

Algorithm 1: Flux Engine

Input: ALS a latency sensitive application,
B a set of batch applications,
QoStarget the target QoS value

1 i = 0
2 phaseIn Ratioi = 0.5
3 phaseOut Ratioi = 0.5
4 phase window = 250ms

5 while ALS.isAlive() do
6 phaseOut interval = phaseOut Ratioi ∗ phase window;
7 Phase out batch applications in B for phaseOut interval

ms;

8 IPCpi
i = measure ALS IPC(phaseOut interval);

/* Measure the latency sensitive application’s IPC
during the B’s Phase-Out period */

9 End Phase-out period for all batch applications;

10 phaseIn interval = phaseIn Ratioi ∗ phase window;
11 Phase in batch applications in B for phaseIn interval ms;
12 IPCpo

i = measure ALS IPC(phaseIn interval);
13 End phase-in period for all batch applications;

14 phaseIn Ratioi+1 =

update ratio(phaseIn Ratioi, IPCpo
i , IPCpi

i , QoStarget);
/* Update the Phase-in/Phase-out Ratio based on the
monitored IPC */;

15 phaseOut Ratioi+1 = 1 − phaseIn Ratioi+1;
16 i+ = 1;
17 end

QoS for a latency sensitive application during the interval i,
we utilize following equation:

QoSi =
phaseInRatioi ∗ IPCpi

i + phaseOutRatioi ∗ IPCpo
i

IPCpo
i

(1)
Using the QoS estimation calculated by Equation 1, we up-
date the next iteration’s phase-in ratio using the following
equation:

phaseInRatiopii+1 = phaseInRatiopii +
QoStarget −QoSi

QoStarget

(2)
where QoStarget is the targeted threshold where the QoS
of the latency-sensitive application is deemed satisfactory.
By taking this approach, PiPo consistently anneals to the
correct QoS value and is neither overly aggressive nor overly
conservative.

6. EVALUATION
[Setup and Methodology]We conduct our experiments

on a 2.2Ghz dual-socket Intel Xeon E5-2660 (Sandy bridge)
with 8 cores and 32GB of DRAM per socket. Each core
has a 32KB L1 private instruction cache, a 32KB L1 private
data cache, a 256 KB L2 cache, and each socket has a shared
20MB L3 cache. The OS is Ubuntu with linux kernel version
3.2.0-29.

Our workloads are shown in Table 1. We use a number
of applications from CloudSuite [15] including Web-search

and Data-serving (Cassandra) to represent our latency-
sensitive applications and a mix of SPEC CPU2006 bench-
marks and CloudSuite’s Data-analytics, a Hadoop-based
benchmark, to represent our batch applications.

6.1 Effectiveness Without A Priori Knowledge
We first evaluate the effectiveness of Bubble-Flux for en-

forcing targeted QoS without prior knowledge of applica-

with Bubble−Flux targeting 98% QoS

  0.8x

  0.82x

  0.84x

  0.86x

  0.88x

  0.9x

  0.92x

  0.94x

  0.96x

  0.98x

  1x

m
il

c

lb
m

li
b

q
u
an

t

so
p
le

x

m
cf

sp
h

in
x

d
−

an
al

y
ti

cs

N
o
rm

al
iz

ed
 Q

o
S

  

without Bubble−Flux
with Bubble−Flux targeting 95% QoS

Figure 5: Web-search - Normalized QoS when co-
running with batch applications shown on the X-axis

  0.65x

  0.7x

  0.75x

  0.8x

  0.85x

  0.9x

  0.95x

  1x

m
il

c

lb
m

li
b
q
u

an
t

so
p

le
x

m
cf

sp
h
in

x

d
−

an
al

y
ti

cs

N
o
rm

al
iz

ed
 Q

o
S

  

  0.6x

without Bubble−Flux
with Bubble−Flux targeting 95% QoS
with Bubble−Flux targeting 98% QoS
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Figure 7: Media-streaming - Normalized QoS when
co-running with batch applications shown on the X-
axis

tions or profiling. In these experiments, the Flux Engine
achieves precise QoS management, meeting 95% and 98%
normalized QoS targets with 1-2% precision. Meanwhile,
the Flux Engine also provides significant gains in utilization
even in the absence of a QoS prediction provided by the
Dynamic Bubble.
Figures 5, 6 and 7 present the normalized QoS of Web-

search, Data-serving and Media-streaming respectively,
when each of them co-runs with a series of batch applica-
tions shown on the X-axis. In this experiment, the latency-
sensitive application occupies 4 cores on an 8 core chip. Each
SPEC benchmark executes 4 instances on the remaining 4
cores. Data-analytics, which is a multi-threaded Hadoop
benchmark, runs on the remaining 4 cores as a batch ap-
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Figure 12: Gained utilization of libquantum (Web-
search is the co-running latency-sensitive applica-
tion)

tum is very contentious, generating 18% degradation without
Bubble-Flux, as shown in Figure 5. Note that prior work,
the Bubble-Up approach, would perdict the 18% degrada-
tion and determine that we could not co-locate libquan-

tum with Web-search, gaining no utilization. However, the
Flux Engine is able to yield an additional 30% utilization, as
shown in Figure 12, while still guaranteeing an average QoS
above 95%. If more stringent requirements on QoS are nec-
essary such as 98%, the Online Flux Engine can still deliver
around 10% utilization on each of the four cores (Figure 12).
As Figure 11 shows, at the 98% QoS target, the Online Flux
Engine achieves very stable QoS, almost always above 96%
of the baseline.

6.2 Capture and Adapt to Load Fluctuation
In this section, we evaluate Bubble-Flux’s effectiveness for

adapting to the load fluctuations of latency-sensitive appli-
cations and providing more utilization when the load is low.

[Adapt to Load Fluctuation] Figures 13 and 14 present
Bubble-Flux’s effectiveness when Web-search’s load fluctu-
ates. We conduct separate experiments with varying load
levels that users generate, including 520, 450, 240 and 140
queries per second (QPS). We observe that as the load drops,
the sensitivity of Web-search to contention drops drastically.
The Online Flux Engine dynamically detects this change
and is able to increase the ratio that batch applications are
phased in. As a result, in both scenarios of the 95% and
98% QoS targets, the Flux Engine approximately doubles
the utilization across all batch applications when load drops
from 520 QPS to 140 QPS. Meanwhile, the Flux Engine is
able to achieve a QoS that is consistently within 0 to 2%
above the targeted QoS of 95%, as shown in Figure 13, and
98%, as shown in Figure 14.

[Instantaneous sensitivity curve generation] In ad-
dition to the capability of adapting to load changes by ad-
justing the batch applications’ machine utilization over time,
Bubble-Flux is simultaneously capable of capturing the la-
tency sensitive application’s varying instantaneous QoS sen-
sitivity to interference at different levels of load, which ex-
poses more co-location opportunities to the cluster sched-
uler.

Figures 15, 16, and 17 presents three sensitivity curves
generated by the Dynamic Bubble when the load to Web-

search ranges from 520 QPS to 140 QPS. The Y-axis shows
the Bubble score, corresponding to bubble sizes from 5MB
to 55MB with a step size of 5MB. These sensitivity curves
demonstrate that Web-search is quite sensitive to contention
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tum is very contentious, generating 18% degradation without
Bubble-Flux, as shown in Figure 5. Note that prior work,
the Bubble-Up approach, would perdict the 18% degrada-
tion and determine that we could not co-locate libquan-

tum with Web-search, gaining no utilization. However, the
Flux Engine is able to yield an additional 30% utilization, as
shown in Figure 12, while still guaranteeing an average QoS
above 95%. If more stringent requirements on QoS are nec-
essary such as 98%, the Online Flux Engine can still deliver
around 10% utilization on each of the four cores (Figure 12).
As Figure 11 shows, at the 98% QoS target, the Online Flux
Engine achieves very stable QoS, almost always above 96%
of the baseline.

6.2 Capture and Adapt to Load Fluctuation
In this section, we evaluate Bubble-Flux’s effectiveness for

adapting to the load fluctuations of latency-sensitive appli-
cations and providing more utilization when the load is low.

[Adapt to Load Fluctuation] Figures 13 and 14 present
Bubble-Flux’s effectiveness when Web-search’s load fluctu-
ates. We conduct separate experiments with varying load
levels that users generate, including 520, 450, 240 and 140
queries per second (QPS). We observe that as the load drops,
the sensitivity of Web-search to contention drops drastically.
The Online Flux Engine dynamically detects this change
and is able to increase the ratio that batch applications are
phased in. As a result, in both scenarios of the 95% and
98% QoS targets, the Flux Engine approximately doubles
the utilization across all batch applications when load drops
from 520 QPS to 140 QPS. Meanwhile, the Flux Engine is
able to achieve a QoS that is consistently within 0 to 2%
above the targeted QoS of 95%, as shown in Figure 13, and
98%, as shown in Figure 14.

[Instantaneous sensitivity curve generation] In ad-
dition to the capability of adapting to load changes by ad-
justing the batch applications’ machine utilization over time,
Bubble-Flux is simultaneously capable of capturing the la-
tency sensitive application’s varying instantaneous QoS sen-
sitivity to interference at different levels of load, which ex-
poses more co-location opportunities to the cluster sched-
uler.

Figures 15, 16, and 17 presents three sensitivity curves
generated by the Dynamic Bubble when the load to Web-

search ranges from 520 QPS to 140 QPS. The Y-axis shows
the Bubble score, corresponding to bubble sizes from 5MB
to 55MB with a step size of 5MB. These sensitivity curves
demonstrate that Web-search is quite sensitive to contention
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tum is very contentious, generating 18% degradation without
Bubble-Flux, as shown in Figure 5. Note that prior work,
the Bubble-Up approach, would perdict the 18% degrada-
tion and determine that we could not co-locate libquan-

tum with Web-search, gaining no utilization. However, the
Flux Engine is able to yield an additional 30% utilization, as
shown in Figure 12, while still guaranteeing an average QoS
above 95%. If more stringent requirements on QoS are nec-
essary such as 98%, the Online Flux Engine can still deliver
around 10% utilization on each of the four cores (Figure 12).
As Figure 11 shows, at the 98% QoS target, the Online Flux
Engine achieves very stable QoS, almost always above 96%
of the baseline.

6.2 Capture and Adapt to Load Fluctuation
In this section, we evaluate Bubble-Flux’s effectiveness for

adapting to the load fluctuations of latency-sensitive appli-
cations and providing more utilization when the load is low.

[Adapt to Load Fluctuation] Figures 13 and 14 present
Bubble-Flux’s effectiveness when Web-search’s load fluctu-
ates. We conduct separate experiments with varying load
levels that users generate, including 520, 450, 240 and 140
queries per second (QPS). We observe that as the load drops,
the sensitivity of Web-search to contention drops drastically.
The Online Flux Engine dynamically detects this change
and is able to increase the ratio that batch applications are
phased in. As a result, in both scenarios of the 95% and
98% QoS targets, the Flux Engine approximately doubles
the utilization across all batch applications when load drops
from 520 QPS to 140 QPS. Meanwhile, the Flux Engine is
able to achieve a QoS that is consistently within 0 to 2%
above the targeted QoS of 95%, as shown in Figure 13, and
98%, as shown in Figure 14.

[Instantaneous sensitivity curve generation] In ad-
dition to the capability of adapting to load changes by ad-
justing the batch applications’ machine utilization over time,
Bubble-Flux is simultaneously capable of capturing the la-
tency sensitive application’s varying instantaneous QoS sen-
sitivity to interference at different levels of load, which ex-
poses more co-location opportunities to the cluster sched-
uler.

Figures 15, 16, and 17 presents three sensitivity curves
generated by the Dynamic Bubble when the load to Web-

search ranges from 520 QPS to 140 QPS. The Y-axis shows
the Bubble score, corresponding to bubble sizes from 5MB
to 55MB with a step size of 5MB. These sensitivity curves
demonstrate that Web-search is quite sensitive to contention
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tum is very contentious, generating 18% degradation without
Bubble-Flux, as shown in Figure 5. Note that prior work,
the Bubble-Up approach, would perdict the 18% degrada-
tion and determine that we could not co-locate libquan-

tum with Web-search, gaining no utilization. However, the
Flux Engine is able to yield an additional 30% utilization, as
shown in Figure 12, while still guaranteeing an average QoS
above 95%. If more stringent requirements on QoS are nec-
essary such as 98%, the Online Flux Engine can still deliver
around 10% utilization on each of the four cores (Figure 12).
As Figure 11 shows, at the 98% QoS target, the Online Flux
Engine achieves very stable QoS, almost always above 96%
of the baseline.

6.2 Capture and Adapt to Load Fluctuation
In this section, we evaluate Bubble-Flux’s effectiveness for

adapting to the load fluctuations of latency-sensitive appli-
cations and providing more utilization when the load is low.

[Adapt to Load Fluctuation] Figures 13 and 14 present
Bubble-Flux’s effectiveness when Web-search’s load fluctu-
ates. We conduct separate experiments with varying load
levels that users generate, including 520, 450, 240 and 140
queries per second (QPS). We observe that as the load drops,
the sensitivity of Web-search to contention drops drastically.
The Online Flux Engine dynamically detects this change
and is able to increase the ratio that batch applications are
phased in. As a result, in both scenarios of the 95% and
98% QoS targets, the Flux Engine approximately doubles
the utilization across all batch applications when load drops
from 520 QPS to 140 QPS. Meanwhile, the Flux Engine is
able to achieve a QoS that is consistently within 0 to 2%
above the targeted QoS of 95%, as shown in Figure 13, and
98%, as shown in Figure 14.

[Instantaneous sensitivity curve generation] In ad-
dition to the capability of adapting to load changes by ad-
justing the batch applications’ machine utilization over time,
Bubble-Flux is simultaneously capable of capturing the la-
tency sensitive application’s varying instantaneous QoS sen-
sitivity to interference at different levels of load, which ex-
poses more co-location opportunities to the cluster sched-
uler.

Figures 15, 16, and 17 presents three sensitivity curves
generated by the Dynamic Bubble when the load to Web-

search ranges from 520 QPS to 140 QPS. The Y-axis shows
the Bubble score, corresponding to bubble sizes from 5MB
to 55MB with a step size of 5MB. These sensitivity curves
demonstrate that Web-search is quite sensitive to contention
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tum is very contentious, generating 18% degradation without
Bubble-Flux, as shown in Figure 5. Note that prior work,
the Bubble-Up approach, would perdict the 18% degrada-
tion and determine that we could not co-locate libquan-

tum with Web-search, gaining no utilization. However, the
Flux Engine is able to yield an additional 30% utilization, as
shown in Figure 12, while still guaranteeing an average QoS
above 95%. If more stringent requirements on QoS are nec-
essary such as 98%, the Online Flux Engine can still deliver
around 10% utilization on each of the four cores (Figure 12).
As Figure 11 shows, at the 98% QoS target, the Online Flux
Engine achieves very stable QoS, almost always above 96%
of the baseline.

6.2 Capture and Adapt to Load Fluctuation
In this section, we evaluate Bubble-Flux’s effectiveness for

adapting to the load fluctuations of latency-sensitive appli-
cations and providing more utilization when the load is low.

[Adapt to Load Fluctuation] Figures 13 and 14 present
Bubble-Flux’s effectiveness when Web-search’s load fluctu-
ates. We conduct separate experiments with varying load
levels that users generate, including 520, 450, 240 and 140
queries per second (QPS). We observe that as the load drops,
the sensitivity of Web-search to contention drops drastically.
The Online Flux Engine dynamically detects this change
and is able to increase the ratio that batch applications are
phased in. As a result, in both scenarios of the 95% and
98% QoS targets, the Flux Engine approximately doubles
the utilization across all batch applications when load drops
from 520 QPS to 140 QPS. Meanwhile, the Flux Engine is
able to achieve a QoS that is consistently within 0 to 2%
above the targeted QoS of 95%, as shown in Figure 13, and
98%, as shown in Figure 14.

[Instantaneous sensitivity curve generation] In ad-
dition to the capability of adapting to load changes by ad-
justing the batch applications’ machine utilization over time,
Bubble-Flux is simultaneously capable of capturing the la-
tency sensitive application’s varying instantaneous QoS sen-
sitivity to interference at different levels of load, which ex-
poses more co-location opportunities to the cluster sched-
uler.

Figures 15, 16, and 17 presents three sensitivity curves
generated by the Dynamic Bubble when the load to Web-

search ranges from 520 QPS to 140 QPS. The Y-axis shows
the Bubble score, corresponding to bubble sizes from 5MB
to 55MB with a step size of 5MB. These sensitivity curves
demonstrate that Web-search is quite sensitive to contention
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tum is very contentious, generating 18% degradation without
Bubble-Flux, as shown in Figure 5. Note that prior work,
the Bubble-Up approach, would perdict the 18% degrada-
tion and determine that we could not co-locate libquan-

tum with Web-search, gaining no utilization. However, the
Flux Engine is able to yield an additional 30% utilization, as
shown in Figure 12, while still guaranteeing an average QoS
above 95%. If more stringent requirements on QoS are nec-
essary such as 98%, the Online Flux Engine can still deliver
around 10% utilization on each of the four cores (Figure 12).
As Figure 11 shows, at the 98% QoS target, the Online Flux
Engine achieves very stable QoS, almost always above 96%
of the baseline.

6.2 Capture and Adapt to Load Fluctuation
In this section, we evaluate Bubble-Flux’s effectiveness for

adapting to the load fluctuations of latency-sensitive appli-
cations and providing more utilization when the load is low.

[Adapt to Load Fluctuation] Figures 13 and 14 present
Bubble-Flux’s effectiveness when Web-search’s load fluctu-
ates. We conduct separate experiments with varying load
levels that users generate, including 520, 450, 240 and 140
queries per second (QPS). We observe that as the load drops,
the sensitivity of Web-search to contention drops drastically.
The Online Flux Engine dynamically detects this change
and is able to increase the ratio that batch applications are
phased in. As a result, in both scenarios of the 95% and
98% QoS targets, the Flux Engine approximately doubles
the utilization across all batch applications when load drops
from 520 QPS to 140 QPS. Meanwhile, the Flux Engine is
able to achieve a QoS that is consistently within 0 to 2%
above the targeted QoS of 95%, as shown in Figure 13, and
98%, as shown in Figure 14.

[Instantaneous sensitivity curve generation] In ad-
dition to the capability of adapting to load changes by ad-
justing the batch applications’ machine utilization over time,
Bubble-Flux is simultaneously capable of capturing the la-
tency sensitive application’s varying instantaneous QoS sen-
sitivity to interference at different levels of load, which ex-
poses more co-location opportunities to the cluster sched-
uler.

Figures 15, 16, and 17 presents three sensitivity curves
generated by the Dynamic Bubble when the load to Web-

search ranges from 520 QPS to 140 QPS. The Y-axis shows
the Bubble score, corresponding to bubble sizes from 5MB
to 55MB with a step size of 5MB. These sensitivity curves
demonstrate that Web-search is quite sensitive to contention
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tum is very contentious, generating 18% degradation without
Bubble-Flux, as shown in Figure 5. Note that prior work,
the Bubble-Up approach, would perdict the 18% degrada-
tion and determine that we could not co-locate libquan-

tum with Web-search, gaining no utilization. However, the
Flux Engine is able to yield an additional 30% utilization, as
shown in Figure 12, while still guaranteeing an average QoS
above 95%. If more stringent requirements on QoS are nec-
essary such as 98%, the Online Flux Engine can still deliver
around 10% utilization on each of the four cores (Figure 12).
As Figure 11 shows, at the 98% QoS target, the Online Flux
Engine achieves very stable QoS, almost always above 96%
of the baseline.

6.2 Capture and Adapt to Load Fluctuation
In this section, we evaluate Bubble-Flux’s effectiveness for

adapting to the load fluctuations of latency-sensitive appli-
cations and providing more utilization when the load is low.

[Adapt to Load Fluctuation] Figures 13 and 14 present
Bubble-Flux’s effectiveness when Web-search’s load fluctu-
ates. We conduct separate experiments with varying load
levels that users generate, including 520, 450, 240 and 140
queries per second (QPS). We observe that as the load drops,
the sensitivity of Web-search to contention drops drastically.
The Online Flux Engine dynamically detects this change
and is able to increase the ratio that batch applications are
phased in. As a result, in both scenarios of the 95% and
98% QoS targets, the Flux Engine approximately doubles
the utilization across all batch applications when load drops
from 520 QPS to 140 QPS. Meanwhile, the Flux Engine is
able to achieve a QoS that is consistently within 0 to 2%
above the targeted QoS of 95%, as shown in Figure 13, and
98%, as shown in Figure 14.

[Instantaneous sensitivity curve generation] In ad-
dition to the capability of adapting to load changes by ad-
justing the batch applications’ machine utilization over time,
Bubble-Flux is simultaneously capable of capturing the la-
tency sensitive application’s varying instantaneous QoS sen-
sitivity to interference at different levels of load, which ex-
poses more co-location opportunities to the cluster sched-
uler.

Figures 15, 16, and 17 presents three sensitivity curves
generated by the Dynamic Bubble when the load to Web-

search ranges from 520 QPS to 140 QPS. The Y-axis shows
the Bubble score, corresponding to bubble sizes from 5MB
to 55MB with a step size of 5MB. These sensitivity curves
demonstrate that Web-search is quite sensitive to contention
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tum is very contentious, generating 18% degradation without
Bubble-Flux, as shown in Figure 5. Note that prior work,
the Bubble-Up approach, would perdict the 18% degrada-
tion and determine that we could not co-locate libquan-

tum with Web-search, gaining no utilization. However, the
Flux Engine is able to yield an additional 30% utilization, as
shown in Figure 12, while still guaranteeing an average QoS
above 95%. If more stringent requirements on QoS are nec-
essary such as 98%, the Online Flux Engine can still deliver
around 10% utilization on each of the four cores (Figure 12).
As Figure 11 shows, at the 98% QoS target, the Online Flux
Engine achieves very stable QoS, almost always above 96%
of the baseline.

6.2 Capture and Adapt to Load Fluctuation
In this section, we evaluate Bubble-Flux’s effectiveness for

adapting to the load fluctuations of latency-sensitive appli-
cations and providing more utilization when the load is low.

[Adapt to Load Fluctuation] Figures 13 and 14 present
Bubble-Flux’s effectiveness when Web-search’s load fluctu-
ates. We conduct separate experiments with varying load
levels that users generate, including 520, 450, 240 and 140
queries per second (QPS). We observe that as the load drops,
the sensitivity of Web-search to contention drops drastically.
The Online Flux Engine dynamically detects this change
and is able to increase the ratio that batch applications are
phased in. As a result, in both scenarios of the 95% and
98% QoS targets, the Flux Engine approximately doubles
the utilization across all batch applications when load drops
from 520 QPS to 140 QPS. Meanwhile, the Flux Engine is
able to achieve a QoS that is consistently within 0 to 2%
above the targeted QoS of 95%, as shown in Figure 13, and
98%, as shown in Figure 14.

[Instantaneous sensitivity curve generation] In ad-
dition to the capability of adapting to load changes by ad-
justing the batch applications’ machine utilization over time,
Bubble-Flux is simultaneously capable of capturing the la-
tency sensitive application’s varying instantaneous QoS sen-
sitivity to interference at different levels of load, which ex-
poses more co-location opportunities to the cluster sched-
uler.

Figures 15, 16, and 17 presents three sensitivity curves
generated by the Dynamic Bubble when the load to Web-

search ranges from 520 QPS to 140 QPS. The Y-axis shows
the Bubble score, corresponding to bubble sizes from 5MB
to 55MB with a step size of 5MB. These sensitivity curves
demonstrate that Web-search is quite sensitive to contention
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tum is very contentious, generating 18% degradation without
Bubble-Flux, as shown in Figure 5. Note that prior work,
the Bubble-Up approach, would perdict the 18% degrada-
tion and determine that we could not co-locate libquan-

tum with Web-search, gaining no utilization. However, the
Flux Engine is able to yield an additional 30% utilization, as
shown in Figure 12, while still guaranteeing an average QoS
above 95%. If more stringent requirements on QoS are nec-
essary such as 98%, the Online Flux Engine can still deliver
around 10% utilization on each of the four cores (Figure 12).
As Figure 11 shows, at the 98% QoS target, the Online Flux
Engine achieves very stable QoS, almost always above 96%
of the baseline.

6.2 Capture and Adapt to Load Fluctuation
In this section, we evaluate Bubble-Flux’s effectiveness for

adapting to the load fluctuations of latency-sensitive appli-
cations and providing more utilization when the load is low.

[Adapt to Load Fluctuation] Figures 13 and 14 present
Bubble-Flux’s effectiveness when Web-search’s load fluctu-
ates. We conduct separate experiments with varying load
levels that users generate, including 520, 450, 240 and 140
queries per second (QPS). We observe that as the load drops,
the sensitivity of Web-search to contention drops drastically.
The Online Flux Engine dynamically detects this change
and is able to increase the ratio that batch applications are
phased in. As a result, in both scenarios of the 95% and
98% QoS targets, the Flux Engine approximately doubles
the utilization across all batch applications when load drops
from 520 QPS to 140 QPS. Meanwhile, the Flux Engine is
able to achieve a QoS that is consistently within 0 to 2%
above the targeted QoS of 95%, as shown in Figure 13, and
98%, as shown in Figure 14.

[Instantaneous sensitivity curve generation] In ad-
dition to the capability of adapting to load changes by ad-
justing the batch applications’ machine utilization over time,
Bubble-Flux is simultaneously capable of capturing the la-
tency sensitive application’s varying instantaneous QoS sen-
sitivity to interference at different levels of load, which ex-
poses more co-location opportunities to the cluster sched-
uler.

Figures 15, 16, and 17 presents three sensitivity curves
generated by the Dynamic Bubble when the load to Web-

search ranges from 520 QPS to 140 QPS. The Y-axis shows
the Bubble score, corresponding to bubble sizes from 5MB
to 55MB with a step size of 5MB. These sensitivity curves
demonstrate that Web-search is quite sensitive to contention
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tum is very contentious, generating 18% degradation without
Bubble-Flux, as shown in Figure 5. Note that prior work,
the Bubble-Up approach, would perdict the 18% degrada-
tion and determine that we could not co-locate libquan-

tum with Web-search, gaining no utilization. However, the
Flux Engine is able to yield an additional 30% utilization, as
shown in Figure 12, while still guaranteeing an average QoS
above 95%. If more stringent requirements on QoS are nec-
essary such as 98%, the Online Flux Engine can still deliver
around 10% utilization on each of the four cores (Figure 12).
As Figure 11 shows, at the 98% QoS target, the Online Flux
Engine achieves very stable QoS, almost always above 96%
of the baseline.

6.2 Capture and Adapt to Load Fluctuation
In this section, we evaluate Bubble-Flux’s effectiveness for

adapting to the load fluctuations of latency-sensitive appli-
cations and providing more utilization when the load is low.

[Adapt to Load Fluctuation] Figures 13 and 14 present
Bubble-Flux’s effectiveness when Web-search’s load fluctu-
ates. We conduct separate experiments with varying load
levels that users generate, including 520, 450, 240 and 140
queries per second (QPS). We observe that as the load drops,
the sensitivity of Web-search to contention drops drastically.
The Online Flux Engine dynamically detects this change
and is able to increase the ratio that batch applications are
phased in. As a result, in both scenarios of the 95% and
98% QoS targets, the Flux Engine approximately doubles
the utilization across all batch applications when load drops
from 520 QPS to 140 QPS. Meanwhile, the Flux Engine is
able to achieve a QoS that is consistently within 0 to 2%
above the targeted QoS of 95%, as shown in Figure 13, and
98%, as shown in Figure 14.

[Instantaneous sensitivity curve generation] In ad-
dition to the capability of adapting to load changes by ad-
justing the batch applications’ machine utilization over time,
Bubble-Flux is simultaneously capable of capturing the la-
tency sensitive application’s varying instantaneous QoS sen-
sitivity to interference at different levels of load, which ex-
poses more co-location opportunities to the cluster sched-
uler.

Figures 15, 16, and 17 presents three sensitivity curves
generated by the Dynamic Bubble when the load to Web-

search ranges from 520 QPS to 140 QPS. The Y-axis shows
the Bubble score, corresponding to bubble sizes from 5MB
to 55MB with a step size of 5MB. These sensitivity curves
demonstrate that Web-search is quite sensitive to contention

  80%

m
il

c

lb
m

li
b
q
u
an

t

so
p
le

x

U
ti

li
za

ti
o
n

520 queries/second
450 queries/second
240 queries/second
140 queries/second

  0%

  10%

  20%

  30%

  40%

  50%

  60%

  70%

Figure 13: Utilization achieved by Bubble-Flux
when targeting 95% QoS of Web-search with vary-
ing load levels

  80%

m
il

c

lb
m

li
b
q
u
an

t

so
p
le

x

U
ti

li
za

ti
o
n

520 queries/second
450 queries/second
240 queries/second
140 queries/second

  0%

  10%

  20%

  30%

  40%

  50%

  60%

  70%

Figure 14: Utilization achieved by Bubble-Flux
when targeting 98% QoS of Web-search with vary-
ing load levels

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  2  4  6  8  10

P
e

rf
o

rm
a

n
ce

 (
n

o
rm

.)

Pressure (MB)

520 QPS

Figure 15: Sensitivity curve at 520 QPS

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  2  4  6  8  10

P
e

rf
o

rm
a

n
ce

 (
n

o
rm

.)

Pressure (MB)

240 QPS

Figure 16: Sensitivity curve at 240 QPS

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  2  4  6  8  10

P
e

rf
o

rm
a

n
ce

 (
n

o
rm

.)

Pressure (MB)

140 QPS

Figure 17: Sensitivity curve at 140 QPS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  50  100  150  200  250  300  350  400  450  500

U
til

iz
a

tio
n

time

Bubble-Flux targeting 95% QoS
Bubble-Flux targeting 98% QoS

Figure 12: Gained utilization of libquantum (Web-
search is the co-running latency-sensitive applica-
tion)

tum is very contentious, generating 18% degradation without
Bubble-Flux, as shown in Figure 5. Note that prior work,
the Bubble-Up approach, would perdict the 18% degrada-
tion and determine that we could not co-locate libquan-

tum with Web-search, gaining no utilization. However, the
Flux Engine is able to yield an additional 30% utilization, as
shown in Figure 12, while still guaranteeing an average QoS
above 95%. If more stringent requirements on QoS are nec-
essary such as 98%, the Online Flux Engine can still deliver
around 10% utilization on each of the four cores (Figure 12).
As Figure 11 shows, at the 98% QoS target, the Online Flux
Engine achieves very stable QoS, almost always above 96%
of the baseline.

6.2 Capture and Adapt to Load Fluctuation
In this section, we evaluate Bubble-Flux’s effectiveness for

adapting to the load fluctuations of latency-sensitive appli-
cations and providing more utilization when the load is low.

[Adapt to Load Fluctuation] Figures 13 and 14 present
Bubble-Flux’s effectiveness when Web-search’s load fluctu-
ates. We conduct separate experiments with varying load
levels that users generate, including 520, 450, 240 and 140
queries per second (QPS). We observe that as the load drops,
the sensitivity of Web-search to contention drops drastically.
The Online Flux Engine dynamically detects this change
and is able to increase the ratio that batch applications are
phased in. As a result, in both scenarios of the 95% and
98% QoS targets, the Flux Engine approximately doubles
the utilization across all batch applications when load drops
from 520 QPS to 140 QPS. Meanwhile, the Flux Engine is
able to achieve a QoS that is consistently within 0 to 2%
above the targeted QoS of 95%, as shown in Figure 13, and
98%, as shown in Figure 14.

[Instantaneous sensitivity curve generation] In ad-
dition to the capability of adapting to load changes by ad-
justing the batch applications’ machine utilization over time,
Bubble-Flux is simultaneously capable of capturing the la-
tency sensitive application’s varying instantaneous QoS sen-
sitivity to interference at different levels of load, which ex-
poses more co-location opportunities to the cluster sched-
uler.

Figures 15, 16, and 17 presents three sensitivity curves
generated by the Dynamic Bubble when the load to Web-

search ranges from 520 QPS to 140 QPS. The Y-axis shows
the Bubble score, corresponding to bubble sizes from 5MB
to 55MB with a step size of 5MB. These sensitivity curves
demonstrate that Web-search is quite sensitive to contention
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tum is very contentious, generating 18% degradation without
Bubble-Flux, as shown in Figure 5. Note that prior work,
the Bubble-Up approach, would perdict the 18% degrada-
tion and determine that we could not co-locate libquan-

tum with Web-search, gaining no utilization. However, the
Flux Engine is able to yield an additional 30% utilization, as
shown in Figure 12, while still guaranteeing an average QoS
above 95%. If more stringent requirements on QoS are nec-
essary such as 98%, the Online Flux Engine can still deliver
around 10% utilization on each of the four cores (Figure 12).
As Figure 11 shows, at the 98% QoS target, the Online Flux
Engine achieves very stable QoS, almost always above 96%
of the baseline.

6.2 Capture and Adapt to Load Fluctuation
In this section, we evaluate Bubble-Flux’s effectiveness for

adapting to the load fluctuations of latency-sensitive appli-
cations and providing more utilization when the load is low.

[Adapt to Load Fluctuation] Figures 13 and 14 present
Bubble-Flux’s effectiveness when Web-search’s load fluctu-
ates. We conduct separate experiments with varying load
levels that users generate, including 520, 450, 240 and 140
queries per second (QPS). We observe that as the load drops,
the sensitivity of Web-search to contention drops drastically.
The Online Flux Engine dynamically detects this change
and is able to increase the ratio that batch applications are
phased in. As a result, in both scenarios of the 95% and
98% QoS targets, the Flux Engine approximately doubles
the utilization across all batch applications when load drops
from 520 QPS to 140 QPS. Meanwhile, the Flux Engine is
able to achieve a QoS that is consistently within 0 to 2%
above the targeted QoS of 95%, as shown in Figure 13, and
98%, as shown in Figure 14.

[Instantaneous sensitivity curve generation] In ad-
dition to the capability of adapting to load changes by ad-
justing the batch applications’ machine utilization over time,
Bubble-Flux is simultaneously capable of capturing the la-
tency sensitive application’s varying instantaneous QoS sen-
sitivity to interference at different levels of load, which ex-
poses more co-location opportunities to the cluster sched-
uler.

Figures 15, 16, and 17 presents three sensitivity curves
generated by the Dynamic Bubble when the load to Web-

search ranges from 520 QPS to 140 QPS. The Y-axis shows
the Bubble score, corresponding to bubble sizes from 5MB
to 55MB with a step size of 5MB. These sensitivity curves
demonstrate that Web-search is quite sensitive to contention
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tum is very contentious, generating 18% degradation without
Bubble-Flux, as shown in Figure 5. Note that prior work,
the Bubble-Up approach, would perdict the 18% degrada-
tion and determine that we could not co-locate libquan-

tum with Web-search, gaining no utilization. However, the
Flux Engine is able to yield an additional 30% utilization, as
shown in Figure 12, while still guaranteeing an average QoS
above 95%. If more stringent requirements on QoS are nec-
essary such as 98%, the Online Flux Engine can still deliver
around 10% utilization on each of the four cores (Figure 12).
As Figure 11 shows, at the 98% QoS target, the Online Flux
Engine achieves very stable QoS, almost always above 96%
of the baseline.

6.2 Capture and Adapt to Load Fluctuation
In this section, we evaluate Bubble-Flux’s effectiveness for

adapting to the load fluctuations of latency-sensitive appli-
cations and providing more utilization when the load is low.

[Adapt to Load Fluctuation] Figures 13 and 14 present
Bubble-Flux’s effectiveness when Web-search’s load fluctu-
ates. We conduct separate experiments with varying load
levels that users generate, including 520, 450, 240 and 140
queries per second (QPS). We observe that as the load drops,
the sensitivity of Web-search to contention drops drastically.
The Online Flux Engine dynamically detects this change
and is able to increase the ratio that batch applications are
phased in. As a result, in both scenarios of the 95% and
98% QoS targets, the Flux Engine approximately doubles
the utilization across all batch applications when load drops
from 520 QPS to 140 QPS. Meanwhile, the Flux Engine is
able to achieve a QoS that is consistently within 0 to 2%
above the targeted QoS of 95%, as shown in Figure 13, and
98%, as shown in Figure 14.

[Instantaneous sensitivity curve generation] In ad-
dition to the capability of adapting to load changes by ad-
justing the batch applications’ machine utilization over time,
Bubble-Flux is simultaneously capable of capturing the la-
tency sensitive application’s varying instantaneous QoS sen-
sitivity to interference at different levels of load, which ex-
poses more co-location opportunities to the cluster sched-
uler.

Figures 15, 16, and 17 presents three sensitivity curves
generated by the Dynamic Bubble when the load to Web-

search ranges from 520 QPS to 140 QPS. The Y-axis shows
the Bubble score, corresponding to bubble sizes from 5MB
to 55MB with a step size of 5MB. These sensitivity curves
demonstrate that Web-search is quite sensitive to contention
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tum is very contentious, generating 18% degradation without
Bubble-Flux, as shown in Figure 5. Note that prior work,
the Bubble-Up approach, would perdict the 18% degrada-
tion and determine that we could not co-locate libquan-

tum with Web-search, gaining no utilization. However, the
Flux Engine is able to yield an additional 30% utilization, as
shown in Figure 12, while still guaranteeing an average QoS
above 95%. If more stringent requirements on QoS are nec-
essary such as 98%, the Online Flux Engine can still deliver
around 10% utilization on each of the four cores (Figure 12).
As Figure 11 shows, at the 98% QoS target, the Online Flux
Engine achieves very stable QoS, almost always above 96%
of the baseline.

6.2 Capture and Adapt to Load Fluctuation
In this section, we evaluate Bubble-Flux’s effectiveness for

adapting to the load fluctuations of latency-sensitive appli-
cations and providing more utilization when the load is low.

[Adapt to Load Fluctuation] Figures 13 and 14 present
Bubble-Flux’s effectiveness when Web-search’s load fluctu-
ates. We conduct separate experiments with varying load
levels that users generate, including 520, 450, 240 and 140
queries per second (QPS). We observe that as the load drops,
the sensitivity of Web-search to contention drops drastically.
The Online Flux Engine dynamically detects this change
and is able to increase the ratio that batch applications are
phased in. As a result, in both scenarios of the 95% and
98% QoS targets, the Flux Engine approximately doubles
the utilization across all batch applications when load drops
from 520 QPS to 140 QPS. Meanwhile, the Flux Engine is
able to achieve a QoS that is consistently within 0 to 2%
above the targeted QoS of 95%, as shown in Figure 13, and
98%, as shown in Figure 14.

[Instantaneous sensitivity curve generation] In ad-
dition to the capability of adapting to load changes by ad-
justing the batch applications’ machine utilization over time,
Bubble-Flux is simultaneously capable of capturing the la-
tency sensitive application’s varying instantaneous QoS sen-
sitivity to interference at different levels of load, which ex-
poses more co-location opportunities to the cluster sched-
uler.

Figures 15, 16, and 17 presents three sensitivity curves
generated by the Dynamic Bubble when the load to Web-

search ranges from 520 QPS to 140 QPS. The Y-axis shows
the Bubble score, corresponding to bubble sizes from 5MB
to 55MB with a step size of 5MB. These sensitivity curves
demonstrate that Web-search is quite sensitive to contention
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tum is very contentious, generating 18% degradation without
Bubble-Flux, as shown in Figure 5. Note that prior work,
the Bubble-Up approach, would perdict the 18% degrada-
tion and determine that we could not co-locate libquan-

tum with Web-search, gaining no utilization. However, the
Flux Engine is able to yield an additional 30% utilization, as
shown in Figure 12, while still guaranteeing an average QoS
above 95%. If more stringent requirements on QoS are nec-
essary such as 98%, the Online Flux Engine can still deliver
around 10% utilization on each of the four cores (Figure 12).
As Figure 11 shows, at the 98% QoS target, the Online Flux
Engine achieves very stable QoS, almost always above 96%
of the baseline.

6.2 Capture and Adapt to Load Fluctuation
In this section, we evaluate Bubble-Flux’s effectiveness for

adapting to the load fluctuations of latency-sensitive appli-
cations and providing more utilization when the load is low.

[Adapt to Load Fluctuation] Figures 13 and 14 present
Bubble-Flux’s effectiveness when Web-search’s load fluctu-
ates. We conduct separate experiments with varying load
levels that users generate, including 520, 450, 240 and 140
queries per second (QPS). We observe that as the load drops,
the sensitivity of Web-search to contention drops drastically.
The Online Flux Engine dynamically detects this change
and is able to increase the ratio that batch applications are
phased in. As a result, in both scenarios of the 95% and
98% QoS targets, the Flux Engine approximately doubles
the utilization across all batch applications when load drops
from 520 QPS to 140 QPS. Meanwhile, the Flux Engine is
able to achieve a QoS that is consistently within 0 to 2%
above the targeted QoS of 95%, as shown in Figure 13, and
98%, as shown in Figure 14.

[Instantaneous sensitivity curve generation] In ad-
dition to the capability of adapting to load changes by ad-
justing the batch applications’ machine utilization over time,
Bubble-Flux is simultaneously capable of capturing the la-
tency sensitive application’s varying instantaneous QoS sen-
sitivity to interference at different levels of load, which ex-
poses more co-location opportunities to the cluster sched-
uler.

Figures 15, 16, and 17 presents three sensitivity curves
generated by the Dynamic Bubble when the load to Web-

search ranges from 520 QPS to 140 QPS. The Y-axis shows
the Bubble score, corresponding to bubble sizes from 5MB
to 55MB with a step size of 5MB. These sensitivity curves
demonstrate that Web-search is quite sensitive to contention
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tum is very contentious, generating 18% degradation without
Bubble-Flux, as shown in Figure 5. Note that prior work,
the Bubble-Up approach, would perdict the 18% degrada-
tion and determine that we could not co-locate libquan-

tum with Web-search, gaining no utilization. However, the
Flux Engine is able to yield an additional 30% utilization, as
shown in Figure 12, while still guaranteeing an average QoS
above 95%. If more stringent requirements on QoS are nec-
essary such as 98%, the Online Flux Engine can still deliver
around 10% utilization on each of the four cores (Figure 12).
As Figure 11 shows, at the 98% QoS target, the Online Flux
Engine achieves very stable QoS, almost always above 96%
of the baseline.

6.2 Capture and Adapt to Load Fluctuation
In this section, we evaluate Bubble-Flux’s effectiveness for

adapting to the load fluctuations of latency-sensitive appli-
cations and providing more utilization when the load is low.

[Adapt to Load Fluctuation] Figures 13 and 14 present
Bubble-Flux’s effectiveness when Web-search’s load fluctu-
ates. We conduct separate experiments with varying load
levels that users generate, including 520, 450, 240 and 140
queries per second (QPS). We observe that as the load drops,
the sensitivity of Web-search to contention drops drastically.
The Online Flux Engine dynamically detects this change
and is able to increase the ratio that batch applications are
phased in. As a result, in both scenarios of the 95% and
98% QoS targets, the Flux Engine approximately doubles
the utilization across all batch applications when load drops
from 520 QPS to 140 QPS. Meanwhile, the Flux Engine is
able to achieve a QoS that is consistently within 0 to 2%
above the targeted QoS of 95%, as shown in Figure 13, and
98%, as shown in Figure 14.

[Instantaneous sensitivity curve generation] In ad-
dition to the capability of adapting to load changes by ad-
justing the batch applications’ machine utilization over time,
Bubble-Flux is simultaneously capable of capturing the la-
tency sensitive application’s varying instantaneous QoS sen-
sitivity to interference at different levels of load, which ex-
poses more co-location opportunities to the cluster sched-
uler.

Figures 15, 16, and 17 presents three sensitivity curves
generated by the Dynamic Bubble when the load to Web-

search ranges from 520 QPS to 140 QPS. The Y-axis shows
the Bubble score, corresponding to bubble sizes from 5MB
to 55MB with a step size of 5MB. These sensitivity curves
demonstrate that Web-search is quite sensitive to contention

  80%

m
il

c

lb
m

li
b
q
u
an

t

so
p
le

x

U
ti

li
za

ti
o
n

520 queries/second
450 queries/second
240 queries/second
140 queries/second

  0%

  10%

  20%

  30%

  40%

  50%

  60%

  70%

Figure 13: Utilization achieved by Bubble-Flux
when targeting 95% QoS of Web-search with vary-
ing load levels

  80%

m
il

c

lb
m

li
b
q
u
an

t

so
p
le

x

U
ti

li
za

ti
o
n

520 queries/second
450 queries/second
240 queries/second
140 queries/second

  0%

  10%

  20%

  30%

  40%

  50%

  60%

  70%

Figure 14: Utilization achieved by Bubble-Flux
when targeting 98% QoS of Web-search with vary-
ing load levels

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  2  4  6  8  10

P
e

rf
o

rm
a

n
ce

 (
n

o
rm

.)

Pressure (MB)

520 QPS

Figure 15: Sensitivity curve at 520 QPS

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  2  4  6  8  10

P
e

rf
o

rm
a

n
ce

 (
n

o
rm

.)

Pressure (MB)

240 QPS

Figure 16: Sensitivity curve at 240 QPS

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  2  4  6  8  10

P
e

rf
o

rm
a

n
ce

 (
n

o
rm

.)

Pressure (MB)

140 QPS

Figure 17: Sensitivity curve at 140 QPS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  50  100  150  200  250  300  350  400  450  500

U
til

iz
a

tio
n

time

Bubble-Flux targeting 95% QoS
Bubble-Flux targeting 98% QoS

Figure 12: Gained utilization of libquantum (Web-
search is the co-running latency-sensitive applica-
tion)

tum is very contentious, generating 18% degradation without
Bubble-Flux, as shown in Figure 5. Note that prior work,
the Bubble-Up approach, would perdict the 18% degrada-
tion and determine that we could not co-locate libquan-

tum with Web-search, gaining no utilization. However, the
Flux Engine is able to yield an additional 30% utilization, as
shown in Figure 12, while still guaranteeing an average QoS
above 95%. If more stringent requirements on QoS are nec-
essary such as 98%, the Online Flux Engine can still deliver
around 10% utilization on each of the four cores (Figure 12).
As Figure 11 shows, at the 98% QoS target, the Online Flux
Engine achieves very stable QoS, almost always above 96%
of the baseline.

6.2 Capture and Adapt to Load Fluctuation
In this section, we evaluate Bubble-Flux’s effectiveness for

adapting to the load fluctuations of latency-sensitive appli-
cations and providing more utilization when the load is low.

[Adapt to Load Fluctuation] Figures 13 and 14 present
Bubble-Flux’s effectiveness when Web-search’s load fluctu-
ates. We conduct separate experiments with varying load
levels that users generate, including 520, 450, 240 and 140
queries per second (QPS). We observe that as the load drops,
the sensitivity of Web-search to contention drops drastically.
The Online Flux Engine dynamically detects this change
and is able to increase the ratio that batch applications are
phased in. As a result, in both scenarios of the 95% and
98% QoS targets, the Flux Engine approximately doubles
the utilization across all batch applications when load drops
from 520 QPS to 140 QPS. Meanwhile, the Flux Engine is
able to achieve a QoS that is consistently within 0 to 2%
above the targeted QoS of 95%, as shown in Figure 13, and
98%, as shown in Figure 14.

[Instantaneous sensitivity curve generation] In ad-
dition to the capability of adapting to load changes by ad-
justing the batch applications’ machine utilization over time,
Bubble-Flux is simultaneously capable of capturing the la-
tency sensitive application’s varying instantaneous QoS sen-
sitivity to interference at different levels of load, which ex-
poses more co-location opportunities to the cluster sched-
uler.

Figures 15, 16, and 17 presents three sensitivity curves
generated by the Dynamic Bubble when the load to Web-

search ranges from 520 QPS to 140 QPS. The Y-axis shows
the Bubble score, corresponding to bubble sizes from 5MB
to 55MB with a step size of 5MB. These sensitivity curves
demonstrate that Web-search is quite sensitive to contention
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tum is very contentious, generating 18% degradation without
Bubble-Flux, as shown in Figure 5. Note that prior work,
the Bubble-Up approach, would perdict the 18% degrada-
tion and determine that we could not co-locate libquan-

tum with Web-search, gaining no utilization. However, the
Flux Engine is able to yield an additional 30% utilization, as
shown in Figure 12, while still guaranteeing an average QoS
above 95%. If more stringent requirements on QoS are nec-
essary such as 98%, the Online Flux Engine can still deliver
around 10% utilization on each of the four cores (Figure 12).
As Figure 11 shows, at the 98% QoS target, the Online Flux
Engine achieves very stable QoS, almost always above 96%
of the baseline.

6.2 Capture and Adapt to Load Fluctuation
In this section, we evaluate Bubble-Flux’s effectiveness for

adapting to the load fluctuations of latency-sensitive appli-
cations and providing more utilization when the load is low.

[Adapt to Load Fluctuation] Figures 13 and 14 present
Bubble-Flux’s effectiveness when Web-search’s load fluctu-
ates. We conduct separate experiments with varying load
levels that users generate, including 520, 450, 240 and 140
queries per second (QPS). We observe that as the load drops,
the sensitivity of Web-search to contention drops drastically.
The Online Flux Engine dynamically detects this change
and is able to increase the ratio that batch applications are
phased in. As a result, in both scenarios of the 95% and
98% QoS targets, the Flux Engine approximately doubles
the utilization across all batch applications when load drops
from 520 QPS to 140 QPS. Meanwhile, the Flux Engine is
able to achieve a QoS that is consistently within 0 to 2%
above the targeted QoS of 95%, as shown in Figure 13, and
98%, as shown in Figure 14.

[Instantaneous sensitivity curve generation] In ad-
dition to the capability of adapting to load changes by ad-
justing the batch applications’ machine utilization over time,
Bubble-Flux is simultaneously capable of capturing the la-
tency sensitive application’s varying instantaneous QoS sen-
sitivity to interference at different levels of load, which ex-
poses more co-location opportunities to the cluster sched-
uler.

Figures 15, 16, and 17 presents three sensitivity curves
generated by the Dynamic Bubble when the load to Web-

search ranges from 520 QPS to 140 QPS. The Y-axis shows
the Bubble score, corresponding to bubble sizes from 5MB
to 55MB with a step size of 5MB. These sensitivity curves
demonstrate that Web-search is quite sensitive to contention
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tum is very contentious, generating 18% degradation without
Bubble-Flux, as shown in Figure 5. Note that prior work,
the Bubble-Up approach, would perdict the 18% degrada-
tion and determine that we could not co-locate libquan-

tum with Web-search, gaining no utilization. However, the
Flux Engine is able to yield an additional 30% utilization, as
shown in Figure 12, while still guaranteeing an average QoS
above 95%. If more stringent requirements on QoS are nec-
essary such as 98%, the Online Flux Engine can still deliver
around 10% utilization on each of the four cores (Figure 12).
As Figure 11 shows, at the 98% QoS target, the Online Flux
Engine achieves very stable QoS, almost always above 96%
of the baseline.

6.2 Capture and Adapt to Load Fluctuation
In this section, we evaluate Bubble-Flux’s effectiveness for

adapting to the load fluctuations of latency-sensitive appli-
cations and providing more utilization when the load is low.

[Adapt to Load Fluctuation] Figures 13 and 14 present
Bubble-Flux’s effectiveness when Web-search’s load fluctu-
ates. We conduct separate experiments with varying load
levels that users generate, including 520, 450, 240 and 140
queries per second (QPS). We observe that as the load drops,
the sensitivity of Web-search to contention drops drastically.
The Online Flux Engine dynamically detects this change
and is able to increase the ratio that batch applications are
phased in. As a result, in both scenarios of the 95% and
98% QoS targets, the Flux Engine approximately doubles
the utilization across all batch applications when load drops
from 520 QPS to 140 QPS. Meanwhile, the Flux Engine is
able to achieve a QoS that is consistently within 0 to 2%
above the targeted QoS of 95%, as shown in Figure 13, and
98%, as shown in Figure 14.

[Instantaneous sensitivity curve generation] In ad-
dition to the capability of adapting to load changes by ad-
justing the batch applications’ machine utilization over time,
Bubble-Flux is simultaneously capable of capturing the la-
tency sensitive application’s varying instantaneous QoS sen-
sitivity to interference at different levels of load, which ex-
poses more co-location opportunities to the cluster sched-
uler.

Figures 15, 16, and 17 presents three sensitivity curves
generated by the Dynamic Bubble when the load to Web-

search ranges from 520 QPS to 140 QPS. The Y-axis shows
the Bubble score, corresponding to bubble sizes from 5MB
to 55MB with a step size of 5MB. These sensitivity curves
demonstrate that Web-search is quite sensitive to contention
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tum is very contentious, generating 18% degradation without
Bubble-Flux, as shown in Figure 5. Note that prior work,
the Bubble-Up approach, would perdict the 18% degrada-
tion and determine that we could not co-locate libquan-

tum with Web-search, gaining no utilization. However, the
Flux Engine is able to yield an additional 30% utilization, as
shown in Figure 12, while still guaranteeing an average QoS
above 95%. If more stringent requirements on QoS are nec-
essary such as 98%, the Online Flux Engine can still deliver
around 10% utilization on each of the four cores (Figure 12).
As Figure 11 shows, at the 98% QoS target, the Online Flux
Engine achieves very stable QoS, almost always above 96%
of the baseline.

6.2 Capture and Adapt to Load Fluctuation
In this section, we evaluate Bubble-Flux’s effectiveness for

adapting to the load fluctuations of latency-sensitive appli-
cations and providing more utilization when the load is low.

[Adapt to Load Fluctuation] Figures 13 and 14 present
Bubble-Flux’s effectiveness when Web-search’s load fluctu-
ates. We conduct separate experiments with varying load
levels that users generate, including 520, 450, 240 and 140
queries per second (QPS). We observe that as the load drops,
the sensitivity of Web-search to contention drops drastically.
The Online Flux Engine dynamically detects this change
and is able to increase the ratio that batch applications are
phased in. As a result, in both scenarios of the 95% and
98% QoS targets, the Flux Engine approximately doubles
the utilization across all batch applications when load drops
from 520 QPS to 140 QPS. Meanwhile, the Flux Engine is
able to achieve a QoS that is consistently within 0 to 2%
above the targeted QoS of 95%, as shown in Figure 13, and
98%, as shown in Figure 14.

[Instantaneous sensitivity curve generation] In ad-
dition to the capability of adapting to load changes by ad-
justing the batch applications’ machine utilization over time,
Bubble-Flux is simultaneously capable of capturing the la-
tency sensitive application’s varying instantaneous QoS sen-
sitivity to interference at different levels of load, which ex-
poses more co-location opportunities to the cluster sched-
uler.

Figures 15, 16, and 17 presents three sensitivity curves
generated by the Dynamic Bubble when the load to Web-

search ranges from 520 QPS to 140 QPS. The Y-axis shows
the Bubble score, corresponding to bubble sizes from 5MB
to 55MB with a step size of 5MB. These sensitivity curves
demonstrate that Web-search is quite sensitive to contention
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tum is very contentious, generating 18% degradation without
Bubble-Flux, as shown in Figure 5. Note that prior work,
the Bubble-Up approach, would perdict the 18% degrada-
tion and determine that we could not co-locate libquan-

tum with Web-search, gaining no utilization. However, the
Flux Engine is able to yield an additional 30% utilization, as
shown in Figure 12, while still guaranteeing an average QoS
above 95%. If more stringent requirements on QoS are nec-
essary such as 98%, the Online Flux Engine can still deliver
around 10% utilization on each of the four cores (Figure 12).
As Figure 11 shows, at the 98% QoS target, the Online Flux
Engine achieves very stable QoS, almost always above 96%
of the baseline.

6.2 Capture and Adapt to Load Fluctuation
In this section, we evaluate Bubble-Flux’s effectiveness for

adapting to the load fluctuations of latency-sensitive appli-
cations and providing more utilization when the load is low.

[Adapt to Load Fluctuation] Figures 13 and 14 present
Bubble-Flux’s effectiveness when Web-search’s load fluctu-
ates. We conduct separate experiments with varying load
levels that users generate, including 520, 450, 240 and 140
queries per second (QPS). We observe that as the load drops,
the sensitivity of Web-search to contention drops drastically.
The Online Flux Engine dynamically detects this change
and is able to increase the ratio that batch applications are
phased in. As a result, in both scenarios of the 95% and
98% QoS targets, the Flux Engine approximately doubles
the utilization across all batch applications when load drops
from 520 QPS to 140 QPS. Meanwhile, the Flux Engine is
able to achieve a QoS that is consistently within 0 to 2%
above the targeted QoS of 95%, as shown in Figure 13, and
98%, as shown in Figure 14.

[Instantaneous sensitivity curve generation] In ad-
dition to the capability of adapting to load changes by ad-
justing the batch applications’ machine utilization over time,
Bubble-Flux is simultaneously capable of capturing the la-
tency sensitive application’s varying instantaneous QoS sen-
sitivity to interference at different levels of load, which ex-
poses more co-location opportunities to the cluster sched-
uler.

Figures 15, 16, and 17 presents three sensitivity curves
generated by the Dynamic Bubble when the load to Web-

search ranges from 520 QPS to 140 QPS. The Y-axis shows
the Bubble score, corresponding to bubble sizes from 5MB
to 55MB with a step size of 5MB. These sensitivity curves
demonstrate that Web-search is quite sensitive to contention
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tum is very contentious, generating 18% degradation without
Bubble-Flux, as shown in Figure 5. Note that prior work,
the Bubble-Up approach, would perdict the 18% degrada-
tion and determine that we could not co-locate libquan-

tum with Web-search, gaining no utilization. However, the
Flux Engine is able to yield an additional 30% utilization, as
shown in Figure 12, while still guaranteeing an average QoS
above 95%. If more stringent requirements on QoS are nec-
essary such as 98%, the Online Flux Engine can still deliver
around 10% utilization on each of the four cores (Figure 12).
As Figure 11 shows, at the 98% QoS target, the Online Flux
Engine achieves very stable QoS, almost always above 96%
of the baseline.

6.2 Capture and Adapt to Load Fluctuation
In this section, we evaluate Bubble-Flux’s effectiveness for

adapting to the load fluctuations of latency-sensitive appli-
cations and providing more utilization when the load is low.

[Adapt to Load Fluctuation] Figures 13 and 14 present
Bubble-Flux’s effectiveness when Web-search’s load fluctu-
ates. We conduct separate experiments with varying load
levels that users generate, including 520, 450, 240 and 140
queries per second (QPS). We observe that as the load drops,
the sensitivity of Web-search to contention drops drastically.
The Online Flux Engine dynamically detects this change
and is able to increase the ratio that batch applications are
phased in. As a result, in both scenarios of the 95% and
98% QoS targets, the Flux Engine approximately doubles
the utilization across all batch applications when load drops
from 520 QPS to 140 QPS. Meanwhile, the Flux Engine is
able to achieve a QoS that is consistently within 0 to 2%
above the targeted QoS of 95%, as shown in Figure 13, and
98%, as shown in Figure 14.

[Instantaneous sensitivity curve generation] In ad-
dition to the capability of adapting to load changes by ad-
justing the batch applications’ machine utilization over time,
Bubble-Flux is simultaneously capable of capturing the la-
tency sensitive application’s varying instantaneous QoS sen-
sitivity to interference at different levels of load, which ex-
poses more co-location opportunities to the cluster sched-
uler.

Figures 15, 16, and 17 presents three sensitivity curves
generated by the Dynamic Bubble when the load to Web-

search ranges from 520 QPS to 140 QPS. The Y-axis shows
the Bubble score, corresponding to bubble sizes from 5MB
to 55MB with a step size of 5MB. These sensitivity curves
demonstrate that Web-search is quite sensitive to contention
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Figure 13: Utilization achieved by Bubble-Flux
when targeting 95% QoS of Web-search with vary-
ing load levels
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Figure 14: Utilization achieved by Bubble-Flux
when targeting 98% QoS of Web-search with vary-
ing load levels
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Figure 15: Sensitivity curve at 520 QPS
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Table 2: Batch Workloads
WL1 lbm, lbm, libquantum, libquantum
WL2 lbm, libquantum,soplex, milc
WL3 mcf, mcf, sphinx, soplex
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Figure 21: Gained utilization by
Bubble-Flux when each workload
is co-located with Web-search
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Figure 22: Gained utilization by
Bubble-Flux when each workload
is co-located with Data-serving
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Figure 23: Gain utilization by
Bubble-Flux when each workload
is co-located with Media-streaming
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Figure 24: Scenario 1. Gained Utilization achieved
by Bubble-Up, the Flux Engine and Bubble-Flux
(Web-search and Data-serving are latency-sensitive
applications).
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Figure 25: Scenario 2. Gained Utilization achieved
by Bubble-Up, the Flux Engine and Bubble-Flux
(Web-search, Data-serving and Media-streaming are
latency-sensitive applications).

the other hand, still provides 24.09% average utilization. In
addition, Bubble-Flux provides even more utilization im-
provement over the Flux Engine. At the 95% QoS thresh-
old, Bubble-Flux increases utilization by 62.6%, and 36.9%
at 98% QoS threshold.

The main advantage of Bubble-Flux over the Flux Engine
alone is the QoS prediction provided by the Dynamic Bub-
ble. With precise prediction, the cluster scheduler can map
more contentious applications to the latency-sensitive appli-
cations that generate less predicted QoS degradation. For
example, in this scenario, the cluster-scheduler based on the
Dynamic Bubble’s prediction maps top contentious bench-
marks such as lbm and libquantum to Web-search instead of
Data-serving, which is more sensitive to contention. With
intelligent mapping facilitated by the Dynamic Bubble’s QoS
prediction, utilization achieved by the Flux Engine is greatly
improved. Scenario 2 has similar results. However, the ad-
ditional improvement provided by the Dynamic Bubble over
the Flux Engine is not as obvious in this case. This is due to
the fact that Data-serving and Media-streaming have sim-
ilar sensitivity to contention and interference, so the random
mapping without the prediction can achieve similar results
as an intelligent mapping.

In conclusion, our results show that Bubble-Up has diffi-
culty co-locating moderately contentious batch applications

with latency-sensitive applications without violating their
QoS guarantees. In contrast, the utilization achieved by
Bubble-Flux is up to 2.2x better than the state-of-practice
Bubble-Up (62% vs. 27% utilization). In addition, Bubble-
Flux can achieve significant utilization when Bubble-Up fails
to utilize any idle cores (24% vs. 0% utilization). These
results demonstrate that Bubble-Flux is effective at signifi-
cantly improving utilization while precisely guaranteeing the
QoS of latency-sensitive applications.

7. RELATED WORK
There has been significant research into mitigating mem-

ory resource contention to improve the performance, fair-
ness and QoS. The closest related work is Bubble-Up [25],
which uses static methods such as profiling to predict per-
formance interference and QoS degradation to identify“safe”
colocations and improve utilization in datacenters. In this
work, we present the Dynamic Bubble mechanism to predict
performance degradation on the fly and the Flux Engine
to enforce QoS once a co-location has been selected. Be-
cause the Dynamic Bubble operates online, it can capitalize
on variations in application sensitivity due to load fluctua-
tions to increase utilization. Scheduling techniques for QoS
management are proposed for both CMPs [14,17,21,38,42]
and SMT architectures [13,35]. Other OS mechanisms such
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Figure 18: Web-search - Normalized QoS when co-
running with workloads shown on the X-axis

when it is running at a high load (520 QPS), suffering a 20%
QoS degradation at bubble score 5 (size 25MB) and higher.
In addition, it is particularly sensitive to the bandwidth con-
tention compared to cache contention, as indicated by the
sharp QoS drop when the bubble size increases from 20 MB
(LLC size) to 25 MB. However, Web-search at 240 QPS and
140 QPS is not as sensitive to interference, as illustrated by
rather flat sensitivity curves, suffering 10% and 7% maxi-
mum degradation when the bubble size is around 45 MB.
Precisely capturing the sensitivity curve in production at
runtime exposes more co-location opportunities to further
improve the utilization. For example, at 520 QPS, a batch
application needs to have a bubble size 20MB and less to
be able to co-locate with Web-search and provide 90% QoS.
However, at 140 QPS, most batch applications can be safely
co-located with Web-search without generating beyond 10%
degradation.

6.3 Scalability beyond Pairwise
Another advantage of Bubble-Flux over the static Bubble-

Up is Bubble-Flux’s capability to scale up beyond pairwise
co-locations and provide precise QoS when multiple, differ-
ent batch applications are co-running.

Figures 18, 19 and 20 present the normalized QoS of Web-
search, Data-serving and Media-streaming when each is
running with a varying set of workloads shown in Table 2.
We observe that as before, the Online Flux Engine is partic-
ularly effective at maintaining the QoS at the target level,
although the gap between the QoS target and the achieved
QoS increases slightly, from +0.3% to 1% with four of a
single batch application (Figures 5 to 7) to +1.0% to 1.6%
with four mixed applications (Figures 18 to 20). Figures 21,
22 and 23 present the corresponding utilization. Workloads
1, 2 and 3 are composed of four of the top six most con-
tentious SPEC CPU2006 benchmarks. We observe that for
the 95% QoS threshold, the utilization gains are similar to
the average utilization gain when each benchmark of the
mixed workload co-runs with the latency-sensitive applica-
tion. However, with 98% QoS target, the utilization gains
are approximately 50% of the utilization achieved when the
workload is composed of batch applications of the same
benchmark type. This is due to the stacking of phases and
the reactive nature of the Flux Engine. If one benchmark
has a spike in contentiousness, all other benchmarks are ag-
gressively phased out. With greater variety in benchmarks,
the occurrence of such events increases.
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Figure 19: Data-serving - Normalized QoS when co-
running with workloads shown on the X-axis
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Figure 20: Media-streaming - Normalized QoS when
co-running with workloads shown on the X-axis

6.4 Applying Bubble-Flux in a WSC
In this section, we conduct experiments to apply Bubble-

Flux in real-world datacenter scenarios and compare Bubble-
Flux with the state-of-the-art Bubble-Up.
Scenario 1: The datacenter is composed of 1000 ma-

chines, 500 machines for Web-search, and the other 500
for Data-serving. Each machine is loaded with a latency-
sensitive application occupying 4 cores, leaving the rest of 4
cores idle. The batch workloads are composed of 1000 appli-
cations, each composed of 4 instances of a batch application
evenly selected from 7 types, including 6 SPEC benchmarks
and Data-analytics shown in Table 1, ready to be mapped.
The QoS threshold for each latency-sensitive application is
95% and 98%.
Scenario 2: The datacenter is composed of 1500 ma-

chines, 500 machines for Web-search, 500 for Data-serving
and 500 for Media-streaming and 1500 batch applications
evenly selected from the 7 types in Table 1.
Figures 24 and 25 illustrate the utilization gains for Sce-

narios 1 and 2 by applying Bubble-Up, the Online Flux En-
gine alone, and Bubble-Flux, targeting at 95% and 98% QoS.
For those two scenarios, all techniques have a comparably
precise QoS guarantee, above 95% and 98% respectively. We
observe that in Scenario 1, the Online Flux Engine yields sig-
nificantly higher utilization than the Bubble-Up approach,
as shown in Figure 24. At the 95% QoS target, the Flux
Engine achieves 49.66% utilization per core on average for
the 2000 (500x4) previously idle cores while Bubble-Up only
generates 27% utilization gain. At the 98% QoS threshold,
Bubble-Up’s prediction indicates that among all batch work-
loads, there are no “safe” co-locaions available, thus yielding
a 0% utilization for those 2000 cores. The Flux Engine on
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Table 2: Batch Workloads
WL1 lbm, lbm, libquantum, libquantum
WL2 lbm, libquantum,soplex, milc
WL3 mcf, mcf, sphinx, soplex
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Figure 21: Gained utilization by
Bubble-Flux when each workload
is co-located with Web-search
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Figure 22: Gained utilization by
Bubble-Flux when each workload
is co-located with Data-serving

  60%

  70%

  80%

W
L

1

W
L

2

W
L

3

G
ai

n
ed

 U
ti

li
za

ti
o

n
 

95% QoS
98% QoS

  0%

  10%

  20%

  30%

  40%

  50%

Figure 23: Gain utilization by
Bubble-Flux when each workload
is co-located with Media-streaming
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Figure 24: Scenario 1. Gained Utilization achieved
by Bubble-Up, the Flux Engine and Bubble-Flux
(Web-search and Data-serving are latency-sensitive
applications).
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Figure 25: Scenario 2. Gained Utilization achieved
by Bubble-Up, the Flux Engine and Bubble-Flux
(Web-search, Data-serving and Media-streaming are
latency-sensitive applications).

the other hand, still provides 24.09% average utilization. In
addition, Bubble-Flux provides even more utilization im-
provement over the Flux Engine. At the 95% QoS thresh-
old, Bubble-Flux increases utilization by 62.6%, and 36.9%
at 98% QoS threshold.

The main advantage of Bubble-Flux over the Flux Engine
alone is the QoS prediction provided by the Dynamic Bub-
ble. With precise prediction, the cluster scheduler can map
more contentious applications to the latency-sensitive appli-
cations that generate less predicted QoS degradation. For
example, in this scenario, the cluster-scheduler based on the
Dynamic Bubble’s prediction maps top contentious bench-
marks such as lbm and libquantum to Web-search instead of
Data-serving, which is more sensitive to contention. With
intelligent mapping facilitated by the Dynamic Bubble’s QoS
prediction, utilization achieved by the Flux Engine is greatly
improved. Scenario 2 has similar results. However, the ad-
ditional improvement provided by the Dynamic Bubble over
the Flux Engine is not as obvious in this case. This is due to
the fact that Data-serving and Media-streaming have sim-
ilar sensitivity to contention and interference, so the random
mapping without the prediction can achieve similar results
as an intelligent mapping.

In conclusion, our results show that Bubble-Up has diffi-
culty co-locating moderately contentious batch applications

with latency-sensitive applications without violating their
QoS guarantees. In contrast, the utilization achieved by
Bubble-Flux is up to 2.2x better than the state-of-practice
Bubble-Up (62% vs. 27% utilization). In addition, Bubble-
Flux can achieve significant utilization when Bubble-Up fails
to utilize any idle cores (24% vs. 0% utilization). These
results demonstrate that Bubble-Flux is effective at signifi-
cantly improving utilization while precisely guaranteeing the
QoS of latency-sensitive applications.

7. RELATED WORK
There has been significant research into mitigating mem-

ory resource contention to improve the performance, fair-
ness and QoS. The closest related work is Bubble-Up [25],
which uses static methods such as profiling to predict per-
formance interference and QoS degradation to identify“safe”
colocations and improve utilization in datacenters. In this
work, we present the Dynamic Bubble mechanism to predict
performance degradation on the fly and the Flux Engine
to enforce QoS once a co-location has been selected. Be-
cause the Dynamic Bubble operates online, it can capitalize
on variations in application sensitivity due to load fluctua-
tions to increase utilization. Scheduling techniques for QoS
management are proposed for both CMPs [14,17,21,38,42]
and SMT architectures [13,35]. Other OS mechanisms such
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Table 2: Batch Workloads
WL1 lbm, lbm, libquantum, libquantum
WL2 lbm, libquantum,soplex, milc
WL3 mcf, mcf, sphinx, soplex
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Figure 21: Gained utilization by
Bubble-Flux when each workload
is co-located with Web-search
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Figure 22: Gained utilization by
Bubble-Flux when each workload
is co-located with Data-serving
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Figure 23: Gain utilization by
Bubble-Flux when each workload
is co-located with Media-streaming
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Figure 24: Scenario 1. Gained Utilization achieved
by Bubble-Up, the Flux Engine and Bubble-Flux
(Web-search and Data-serving are latency-sensitive
applications).
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Figure 25: Scenario 2. Gained Utilization achieved
by Bubble-Up, the Flux Engine and Bubble-Flux
(Web-search, Data-serving and Media-streaming are
latency-sensitive applications).

the other hand, still provides 24.09% average utilization. In
addition, Bubble-Flux provides even more utilization im-
provement over the Flux Engine. At the 95% QoS thresh-
old, Bubble-Flux increases utilization by 62.6%, and 36.9%
at 98% QoS threshold.

The main advantage of Bubble-Flux over the Flux Engine
alone is the QoS prediction provided by the Dynamic Bub-
ble. With precise prediction, the cluster scheduler can map
more contentious applications to the latency-sensitive appli-
cations that generate less predicted QoS degradation. For
example, in this scenario, the cluster-scheduler based on the
Dynamic Bubble’s prediction maps top contentious bench-
marks such as lbm and libquantum to Web-search instead of
Data-serving, which is more sensitive to contention. With
intelligent mapping facilitated by the Dynamic Bubble’s QoS
prediction, utilization achieved by the Flux Engine is greatly
improved. Scenario 2 has similar results. However, the ad-
ditional improvement provided by the Dynamic Bubble over
the Flux Engine is not as obvious in this case. This is due to
the fact that Data-serving and Media-streaming have sim-
ilar sensitivity to contention and interference, so the random
mapping without the prediction can achieve similar results
as an intelligent mapping.

In conclusion, our results show that Bubble-Up has diffi-
culty co-locating moderately contentious batch applications

with latency-sensitive applications without violating their
QoS guarantees. In contrast, the utilization achieved by
Bubble-Flux is up to 2.2x better than the state-of-practice
Bubble-Up (62% vs. 27% utilization). In addition, Bubble-
Flux can achieve significant utilization when Bubble-Up fails
to utilize any idle cores (24% vs. 0% utilization). These
results demonstrate that Bubble-Flux is effective at signifi-
cantly improving utilization while precisely guaranteeing the
QoS of latency-sensitive applications.

7. RELATED WORK
There has been significant research into mitigating mem-

ory resource contention to improve the performance, fair-
ness and QoS. The closest related work is Bubble-Up [25],
which uses static methods such as profiling to predict per-
formance interference and QoS degradation to identify“safe”
colocations and improve utilization in datacenters. In this
work, we present the Dynamic Bubble mechanism to predict
performance degradation on the fly and the Flux Engine
to enforce QoS once a co-location has been selected. Be-
cause the Dynamic Bubble operates online, it can capitalize
on variations in application sensitivity due to load fluctua-
tions to increase utilization. Scheduling techniques for QoS
management are proposed for both CMPs [14,17,21,38,42]
and SMT architectures [13,35]. Other OS mechanisms such
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Figure 18: Web-search - Normalized QoS when co-
running with workloads shown on the X-axis

when it is running at a high load (520 QPS), suffering a 20%
QoS degradation at bubble score 5 (size 25MB) and higher.
In addition, it is particularly sensitive to the bandwidth con-
tention compared to cache contention, as indicated by the
sharp QoS drop when the bubble size increases from 20 MB
(LLC size) to 25 MB. However, Web-search at 240 QPS and
140 QPS is not as sensitive to interference, as illustrated by
rather flat sensitivity curves, suffering 10% and 7% maxi-
mum degradation when the bubble size is around 45 MB.
Precisely capturing the sensitivity curve in production at
runtime exposes more co-location opportunities to further
improve the utilization. For example, at 520 QPS, a batch
application needs to have a bubble size 20MB and less to
be able to co-locate with Web-search and provide 90% QoS.
However, at 140 QPS, most batch applications can be safely
co-located with Web-search without generating beyond 10%
degradation.

6.3 Scalability beyond Pairwise
Another advantage of Bubble-Flux over the static Bubble-

Up is Bubble-Flux’s capability to scale up beyond pairwise
co-locations and provide precise QoS when multiple, differ-
ent batch applications are co-running.

Figures 18, 19 and 20 present the normalized QoS of Web-
search, Data-serving and Media-streaming when each is
running with a varying set of workloads shown in Table 2.
We observe that as before, the Online Flux Engine is partic-
ularly effective at maintaining the QoS at the target level,
although the gap between the QoS target and the achieved
QoS increases slightly, from +0.3% to 1% with four of a
single batch application (Figures 5 to 7) to +1.0% to 1.6%
with four mixed applications (Figures 18 to 20). Figures 21,
22 and 23 present the corresponding utilization. Workloads
1, 2 and 3 are composed of four of the top six most con-
tentious SPEC CPU2006 benchmarks. We observe that for
the 95% QoS threshold, the utilization gains are similar to
the average utilization gain when each benchmark of the
mixed workload co-runs with the latency-sensitive applica-
tion. However, with 98% QoS target, the utilization gains
are approximately 50% of the utilization achieved when the
workload is composed of batch applications of the same
benchmark type. This is due to the stacking of phases and
the reactive nature of the Flux Engine. If one benchmark
has a spike in contentiousness, all other benchmarks are ag-
gressively phased out. With greater variety in benchmarks,
the occurrence of such events increases.
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Figure 19: Data-serving - Normalized QoS when co-
running with workloads shown on the X-axis
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Figure 20: Media-streaming - Normalized QoS when
co-running with workloads shown on the X-axis

6.4 Applying Bubble-Flux in a WSC
In this section, we conduct experiments to apply Bubble-

Flux in real-world datacenter scenarios and compare Bubble-
Flux with the state-of-the-art Bubble-Up.
Scenario 1: The datacenter is composed of 1000 ma-

chines, 500 machines for Web-search, and the other 500
for Data-serving. Each machine is loaded with a latency-
sensitive application occupying 4 cores, leaving the rest of 4
cores idle. The batch workloads are composed of 1000 appli-
cations, each composed of 4 instances of a batch application
evenly selected from 7 types, including 6 SPEC benchmarks
and Data-analytics shown in Table 1, ready to be mapped.
The QoS threshold for each latency-sensitive application is
95% and 98%.
Scenario 2: The datacenter is composed of 1500 ma-

chines, 500 machines for Web-search, 500 for Data-serving
and 500 for Media-streaming and 1500 batch applications
evenly selected from the 7 types in Table 1.
Figures 24 and 25 illustrate the utilization gains for Sce-

narios 1 and 2 by applying Bubble-Up, the Online Flux En-
gine alone, and Bubble-Flux, targeting at 95% and 98% QoS.
For those two scenarios, all techniques have a comparably
precise QoS guarantee, above 95% and 98% respectively. We
observe that in Scenario 1, the Online Flux Engine yields sig-
nificantly higher utilization than the Bubble-Up approach,
as shown in Figure 24. At the 95% QoS target, the Flux
Engine achieves 49.66% utilization per core on average for
the 2000 (500x4) previously idle cores while Bubble-Up only
generates 27% utilization gain. At the 98% QoS threshold,
Bubble-Up’s prediction indicates that among all batch work-
loads, there are no “safe” co-locaions available, thus yielding
a 0% utilization for those 2000 cores. The Flux Engine on
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Table 2: Batch Workloads
WL1 lbm, lbm, libquantum, libquantum
WL2 lbm, libquantum,soplex, milc
WL3 mcf, mcf, sphinx, soplex

  50%

  60%

  70%

  80%

W
L

1

W
L

2

W
L

3

G
ai

n
ed

 U
ti

li
za

ti
o

n
 

95% QoS
98% QoS

  0%

  10%

  20%

  30%

  40%

Figure 21: Gained utilization by
Bubble-Flux when each workload
is co-located with Web-search
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Figure 22: Gained utilization by
Bubble-Flux when each workload
is co-located with Data-serving
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Figure 23: Gain utilization by
Bubble-Flux when each workload
is co-located with Media-streaming
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Figure 24: Scenario 1. Gained Utilization achieved
by Bubble-Up, the Flux Engine and Bubble-Flux
(Web-search and Data-serving are latency-sensitive
applications).
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Figure 25: Scenario 2. Gained Utilization achieved
by Bubble-Up, the Flux Engine and Bubble-Flux
(Web-search, Data-serving and Media-streaming are
latency-sensitive applications).

the other hand, still provides 24.09% average utilization. In
addition, Bubble-Flux provides even more utilization im-
provement over the Flux Engine. At the 95% QoS thresh-
old, Bubble-Flux increases utilization by 62.6%, and 36.9%
at 98% QoS threshold.

The main advantage of Bubble-Flux over the Flux Engine
alone is the QoS prediction provided by the Dynamic Bub-
ble. With precise prediction, the cluster scheduler can map
more contentious applications to the latency-sensitive appli-
cations that generate less predicted QoS degradation. For
example, in this scenario, the cluster-scheduler based on the
Dynamic Bubble’s prediction maps top contentious bench-
marks such as lbm and libquantum to Web-search instead of
Data-serving, which is more sensitive to contention. With
intelligent mapping facilitated by the Dynamic Bubble’s QoS
prediction, utilization achieved by the Flux Engine is greatly
improved. Scenario 2 has similar results. However, the ad-
ditional improvement provided by the Dynamic Bubble over
the Flux Engine is not as obvious in this case. This is due to
the fact that Data-serving and Media-streaming have sim-
ilar sensitivity to contention and interference, so the random
mapping without the prediction can achieve similar results
as an intelligent mapping.

In conclusion, our results show that Bubble-Up has diffi-
culty co-locating moderately contentious batch applications

with latency-sensitive applications without violating their
QoS guarantees. In contrast, the utilization achieved by
Bubble-Flux is up to 2.2x better than the state-of-practice
Bubble-Up (62% vs. 27% utilization). In addition, Bubble-
Flux can achieve significant utilization when Bubble-Up fails
to utilize any idle cores (24% vs. 0% utilization). These
results demonstrate that Bubble-Flux is effective at signifi-
cantly improving utilization while precisely guaranteeing the
QoS of latency-sensitive applications.

7. RELATED WORK
There has been significant research into mitigating mem-

ory resource contention to improve the performance, fair-
ness and QoS. The closest related work is Bubble-Up [25],
which uses static methods such as profiling to predict per-
formance interference and QoS degradation to identify“safe”
colocations and improve utilization in datacenters. In this
work, we present the Dynamic Bubble mechanism to predict
performance degradation on the fly and the Flux Engine
to enforce QoS once a co-location has been selected. Be-
cause the Dynamic Bubble operates online, it can capitalize
on variations in application sensitivity due to load fluctua-
tions to increase utilization. Scheduling techniques for QoS
management are proposed for both CMPs [14,17,21,38,42]
and SMT architectures [13,35]. Other OS mechanisms such

WL2WL1 WL3

Baseline: original 
Flux targeting 95% QoS

Flux targeting 98% QoS

n The Flux Engine can manages more than 2 various 
co-runners

U
til

iz
at

io
n

Flux: targeting 95% QoS

Flux targeting 98% QoS

Workloads

Sunday, July 21, 13



Put all together: Apply Bubble-Flux in a WSC
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n To map: batch workloads, composed 
of 1000 mixed applications of 7 types

Table 2: Batch Workloads
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Figure 21: Gained utilization by
Bubble-Flux when each workload
is co-located with Web-search

  60%

  70%

  80%

W
L

1

W
L

2

W
L

3

G
ai

n
ed

 U
ti

li
za

ti
o

n
  

95% QoS
98% QoS

  0%

  10%

  20%

  30%

  40%

  50%

Figure 22: Gained utilization by
Bubble-Flux when each workload
is co-located with Data-serving
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Figure 23: Gain utilization by
Bubble-Flux when each workload
is co-located with Media-streaming
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Figure 24: Scenario 1. Gained Utilization achieved
by Bubble-Up, the Flux Engine and Bubble-Flux
(Web-search and Data-serving are latency-sensitive
applications).
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Figure 25: Scenario 2. Gained Utilization achieved
by Bubble-Up, the Flux Engine and Bubble-Flux
(Web-search, Data-serving and Media-streaming are
latency-sensitive applications).

the other hand, still provides 24.09% average utilization. In
addition, Bubble-Flux provides even more utilization im-
provement over the Flux Engine. At the 95% QoS thresh-
old, Bubble-Flux increases utilization by 62.6%, and 36.9%
at 98% QoS threshold.

The main advantage of Bubble-Flux over the Flux Engine
alone is the QoS prediction provided by the Dynamic Bub-
ble. With precise prediction, the cluster scheduler can map
more contentious applications to the latency-sensitive appli-
cations that generate less predicted QoS degradation. For
example, in this scenario, the cluster-scheduler based on the
Dynamic Bubble’s prediction maps top contentious bench-
marks such as lbm and libquantum to Web-search instead of
Data-serving, which is more sensitive to contention. With
intelligent mapping facilitated by the Dynamic Bubble’s QoS
prediction, utilization achieved by the Flux Engine is greatly
improved. Scenario 2 has similar results. However, the ad-
ditional improvement provided by the Dynamic Bubble over
the Flux Engine is not as obvious in this case. This is due to
the fact that Data-serving and Media-streaming have sim-
ilar sensitivity to contention and interference, so the random
mapping without the prediction can achieve similar results
as an intelligent mapping.

In conclusion, our results show that Bubble-Up has diffi-
culty co-locating moderately contentious batch applications

with latency-sensitive applications without violating their
QoS guarantees. In contrast, the utilization achieved by
Bubble-Flux is up to 2.2x better than the state-of-practice
Bubble-Up (62% vs. 27% utilization). In addition, Bubble-
Flux can achieve significant utilization when Bubble-Up fails
to utilize any idle cores (24% vs. 0% utilization). These
results demonstrate that Bubble-Flux is effective at signifi-
cantly improving utilization while precisely guaranteeing the
QoS of latency-sensitive applications.

7. RELATED WORK
There has been significant research into mitigating mem-

ory resource contention to improve the performance, fair-
ness and QoS. The closest related work is Bubble-Up [25],
which uses static methods such as profiling to predict per-
formance interference and QoS degradation to identify“safe”
colocations and improve utilization in datacenters. In this
work, we present the Dynamic Bubble mechanism to predict
performance degradation on the fly and the Flux Engine
to enforce QoS once a co-location has been selected. Be-
cause the Dynamic Bubble operates online, it can capitalize
on variations in application sensitivity due to load fluctua-
tions to increase utilization. Scheduling techniques for QoS
management are proposed for both CMPs [14,17,21,38,42]
and SMT architectures [13,35]. Other OS mechanisms such
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Put all together: Apply Bubble-Flux in a WSC

n Scenario 1

n 1000 machines (500 Web-search,500 
Data-serving). 

n Before mapping: LS on 4 cores,  4 
cores idle. 

n To map: batch workloads, composed 
of 1000 mixed applications of 7 types

Table 2: Batch Workloads
WL1 lbm, lbm, libquantum, libquantum
WL2 lbm, libquantum,soplex, milc
WL3 mcf, mcf, sphinx, soplex
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Figure 21: Gained utilization by
Bubble-Flux when each workload
is co-located with Web-search
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Figure 22: Gained utilization by
Bubble-Flux when each workload
is co-located with Data-serving
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Figure 23: Gain utilization by
Bubble-Flux when each workload
is co-located with Media-streaming
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Figure 24: Scenario 1. Gained Utilization achieved
by Bubble-Up, the Flux Engine and Bubble-Flux
(Web-search and Data-serving are latency-sensitive
applications).
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Figure 25: Scenario 2. Gained Utilization achieved
by Bubble-Up, the Flux Engine and Bubble-Flux
(Web-search, Data-serving and Media-streaming are
latency-sensitive applications).

the other hand, still provides 24.09% average utilization. In
addition, Bubble-Flux provides even more utilization im-
provement over the Flux Engine. At the 95% QoS thresh-
old, Bubble-Flux increases utilization by 62.6%, and 36.9%
at 98% QoS threshold.

The main advantage of Bubble-Flux over the Flux Engine
alone is the QoS prediction provided by the Dynamic Bub-
ble. With precise prediction, the cluster scheduler can map
more contentious applications to the latency-sensitive appli-
cations that generate less predicted QoS degradation. For
example, in this scenario, the cluster-scheduler based on the
Dynamic Bubble’s prediction maps top contentious bench-
marks such as lbm and libquantum to Web-search instead of
Data-serving, which is more sensitive to contention. With
intelligent mapping facilitated by the Dynamic Bubble’s QoS
prediction, utilization achieved by the Flux Engine is greatly
improved. Scenario 2 has similar results. However, the ad-
ditional improvement provided by the Dynamic Bubble over
the Flux Engine is not as obvious in this case. This is due to
the fact that Data-serving and Media-streaming have sim-
ilar sensitivity to contention and interference, so the random
mapping without the prediction can achieve similar results
as an intelligent mapping.

In conclusion, our results show that Bubble-Up has diffi-
culty co-locating moderately contentious batch applications

with latency-sensitive applications without violating their
QoS guarantees. In contrast, the utilization achieved by
Bubble-Flux is up to 2.2x better than the state-of-practice
Bubble-Up (62% vs. 27% utilization). In addition, Bubble-
Flux can achieve significant utilization when Bubble-Up fails
to utilize any idle cores (24% vs. 0% utilization). These
results demonstrate that Bubble-Flux is effective at signifi-
cantly improving utilization while precisely guaranteeing the
QoS of latency-sensitive applications.

7. RELATED WORK
There has been significant research into mitigating mem-

ory resource contention to improve the performance, fair-
ness and QoS. The closest related work is Bubble-Up [25],
which uses static methods such as profiling to predict per-
formance interference and QoS degradation to identify“safe”
colocations and improve utilization in datacenters. In this
work, we present the Dynamic Bubble mechanism to predict
performance degradation on the fly and the Flux Engine
to enforce QoS once a co-location has been selected. Be-
cause the Dynamic Bubble operates online, it can capitalize
on variations in application sensitivity due to load fluctua-
tions to increase utilization. Scheduling techniques for QoS
management are proposed for both CMPs [14,17,21,38,42]
and SMT architectures [13,35]. Other OS mechanisms such
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Figure 21: Gained utilization by
Bubble-Flux when each workload
is co-located with Web-search
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Figure 22: Gained utilization by
Bubble-Flux when each workload
is co-located with Data-serving
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Figure 23: Gain utilization by
Bubble-Flux when each workload
is co-located with Media-streaming
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Figure 24: Scenario 1. Gained Utilization achieved
by Bubble-Up, the Flux Engine and Bubble-Flux
(Web-search and Data-serving are latency-sensitive
applications).
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Figure 25: Scenario 2. Gained Utilization achieved
by Bubble-Up, the Flux Engine and Bubble-Flux
(Web-search, Data-serving and Media-streaming are
latency-sensitive applications).

the other hand, still provides 24.09% average utilization. In
addition, Bubble-Flux provides even more utilization im-
provement over the Flux Engine. At the 95% QoS thresh-
old, Bubble-Flux increases utilization by 62.6%, and 36.9%
at 98% QoS threshold.

The main advantage of Bubble-Flux over the Flux Engine
alone is the QoS prediction provided by the Dynamic Bub-
ble. With precise prediction, the cluster scheduler can map
more contentious applications to the latency-sensitive appli-
cations that generate less predicted QoS degradation. For
example, in this scenario, the cluster-scheduler based on the
Dynamic Bubble’s prediction maps top contentious bench-
marks such as lbm and libquantum to Web-search instead of
Data-serving, which is more sensitive to contention. With
intelligent mapping facilitated by the Dynamic Bubble’s QoS
prediction, utilization achieved by the Flux Engine is greatly
improved. Scenario 2 has similar results. However, the ad-
ditional improvement provided by the Dynamic Bubble over
the Flux Engine is not as obvious in this case. This is due to
the fact that Data-serving and Media-streaming have sim-
ilar sensitivity to contention and interference, so the random
mapping without the prediction can achieve similar results
as an intelligent mapping.

In conclusion, our results show that Bubble-Up has diffi-
culty co-locating moderately contentious batch applications

with latency-sensitive applications without violating their
QoS guarantees. In contrast, the utilization achieved by
Bubble-Flux is up to 2.2x better than the state-of-practice
Bubble-Up (62% vs. 27% utilization). In addition, Bubble-
Flux can achieve significant utilization when Bubble-Up fails
to utilize any idle cores (24% vs. 0% utilization). These
results demonstrate that Bubble-Flux is effective at signifi-
cantly improving utilization while precisely guaranteeing the
QoS of latency-sensitive applications.

7. RELATED WORK
There has been significant research into mitigating mem-

ory resource contention to improve the performance, fair-
ness and QoS. The closest related work is Bubble-Up [25],
which uses static methods such as profiling to predict per-
formance interference and QoS degradation to identify“safe”
colocations and improve utilization in datacenters. In this
work, we present the Dynamic Bubble mechanism to predict
performance degradation on the fly and the Flux Engine
to enforce QoS once a co-location has been selected. Be-
cause the Dynamic Bubble operates online, it can capitalize
on variations in application sensitivity due to load fluctua-
tions to increase utilization. Scheduling techniques for QoS
management are proposed for both CMPs [14,17,21,38,42]
and SMT architectures [13,35]. Other OS mechanisms such
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Put all together: Apply Bubble-Flux in a WSC
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n To map: batch workloads, composed 
of 1000 mixed applications of 7 types

Table 2: Batch Workloads
WL1 lbm, lbm, libquantum, libquantum
WL2 lbm, libquantum,soplex, milc
WL3 mcf, mcf, sphinx, soplex
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Figure 21: Gained utilization by
Bubble-Flux when each workload
is co-located with Web-search
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Figure 22: Gained utilization by
Bubble-Flux when each workload
is co-located with Data-serving
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Figure 23: Gain utilization by
Bubble-Flux when each workload
is co-located with Media-streaming
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Figure 24: Scenario 1. Gained Utilization achieved
by Bubble-Up, the Flux Engine and Bubble-Flux
(Web-search and Data-serving are latency-sensitive
applications).
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Figure 25: Scenario 2. Gained Utilization achieved
by Bubble-Up, the Flux Engine and Bubble-Flux
(Web-search, Data-serving and Media-streaming are
latency-sensitive applications).

the other hand, still provides 24.09% average utilization. In
addition, Bubble-Flux provides even more utilization im-
provement over the Flux Engine. At the 95% QoS thresh-
old, Bubble-Flux increases utilization by 62.6%, and 36.9%
at 98% QoS threshold.

The main advantage of Bubble-Flux over the Flux Engine
alone is the QoS prediction provided by the Dynamic Bub-
ble. With precise prediction, the cluster scheduler can map
more contentious applications to the latency-sensitive appli-
cations that generate less predicted QoS degradation. For
example, in this scenario, the cluster-scheduler based on the
Dynamic Bubble’s prediction maps top contentious bench-
marks such as lbm and libquantum to Web-search instead of
Data-serving, which is more sensitive to contention. With
intelligent mapping facilitated by the Dynamic Bubble’s QoS
prediction, utilization achieved by the Flux Engine is greatly
improved. Scenario 2 has similar results. However, the ad-
ditional improvement provided by the Dynamic Bubble over
the Flux Engine is not as obvious in this case. This is due to
the fact that Data-serving and Media-streaming have sim-
ilar sensitivity to contention and interference, so the random
mapping without the prediction can achieve similar results
as an intelligent mapping.

In conclusion, our results show that Bubble-Up has diffi-
culty co-locating moderately contentious batch applications

with latency-sensitive applications without violating their
QoS guarantees. In contrast, the utilization achieved by
Bubble-Flux is up to 2.2x better than the state-of-practice
Bubble-Up (62% vs. 27% utilization). In addition, Bubble-
Flux can achieve significant utilization when Bubble-Up fails
to utilize any idle cores (24% vs. 0% utilization). These
results demonstrate that Bubble-Flux is effective at signifi-
cantly improving utilization while precisely guaranteeing the
QoS of latency-sensitive applications.

7. RELATED WORK
There has been significant research into mitigating mem-

ory resource contention to improve the performance, fair-
ness and QoS. The closest related work is Bubble-Up [25],
which uses static methods such as profiling to predict per-
formance interference and QoS degradation to identify“safe”
colocations and improve utilization in datacenters. In this
work, we present the Dynamic Bubble mechanism to predict
performance degradation on the fly and the Flux Engine
to enforce QoS once a co-location has been selected. Be-
cause the Dynamic Bubble operates online, it can capitalize
on variations in application sensitivity due to load fluctua-
tions to increase utilization. Scheduling techniques for QoS
management are proposed for both CMPs [14,17,21,38,42]
and SMT architectures [13,35]. Other OS mechanisms such
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Table 2: Batch Workloads
WL1 lbm, lbm, libquantum, libquantum
WL2 lbm, libquantum,soplex, milc
WL3 mcf, mcf, sphinx, soplex
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Figure 21: Gained utilization by
Bubble-Flux when each workload
is co-located with Web-search
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Figure 22: Gained utilization by
Bubble-Flux when each workload
is co-located with Data-serving
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Figure 23: Gain utilization by
Bubble-Flux when each workload
is co-located with Media-streaming
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Figure 24: Scenario 1. Gained Utilization achieved
by Bubble-Up, the Flux Engine and Bubble-Flux
(Web-search and Data-serving are latency-sensitive
applications).
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Figure 25: Scenario 2. Gained Utilization achieved
by Bubble-Up, the Flux Engine and Bubble-Flux
(Web-search, Data-serving and Media-streaming are
latency-sensitive applications).

the other hand, still provides 24.09% average utilization. In
addition, Bubble-Flux provides even more utilization im-
provement over the Flux Engine. At the 95% QoS thresh-
old, Bubble-Flux increases utilization by 62.6%, and 36.9%
at 98% QoS threshold.

The main advantage of Bubble-Flux over the Flux Engine
alone is the QoS prediction provided by the Dynamic Bub-
ble. With precise prediction, the cluster scheduler can map
more contentious applications to the latency-sensitive appli-
cations that generate less predicted QoS degradation. For
example, in this scenario, the cluster-scheduler based on the
Dynamic Bubble’s prediction maps top contentious bench-
marks such as lbm and libquantum to Web-search instead of
Data-serving, which is more sensitive to contention. With
intelligent mapping facilitated by the Dynamic Bubble’s QoS
prediction, utilization achieved by the Flux Engine is greatly
improved. Scenario 2 has similar results. However, the ad-
ditional improvement provided by the Dynamic Bubble over
the Flux Engine is not as obvious in this case. This is due to
the fact that Data-serving and Media-streaming have sim-
ilar sensitivity to contention and interference, so the random
mapping without the prediction can achieve similar results
as an intelligent mapping.

In conclusion, our results show that Bubble-Up has diffi-
culty co-locating moderately contentious batch applications

with latency-sensitive applications without violating their
QoS guarantees. In contrast, the utilization achieved by
Bubble-Flux is up to 2.2x better than the state-of-practice
Bubble-Up (62% vs. 27% utilization). In addition, Bubble-
Flux can achieve significant utilization when Bubble-Up fails
to utilize any idle cores (24% vs. 0% utilization). These
results demonstrate that Bubble-Flux is effective at signifi-
cantly improving utilization while precisely guaranteeing the
QoS of latency-sensitive applications.

7. RELATED WORK
There has been significant research into mitigating mem-

ory resource contention to improve the performance, fair-
ness and QoS. The closest related work is Bubble-Up [25],
which uses static methods such as profiling to predict per-
formance interference and QoS degradation to identify“safe”
colocations and improve utilization in datacenters. In this
work, we present the Dynamic Bubble mechanism to predict
performance degradation on the fly and the Flux Engine
to enforce QoS once a co-location has been selected. Be-
cause the Dynamic Bubble operates online, it can capitalize
on variations in application sensitivity due to load fluctua-
tions to increase utilization. Scheduling techniques for QoS
management are proposed for both CMPs [14,17,21,38,42]
and SMT architectures [13,35]. Other OS mechanisms such

n Scenario 2

n 1500 machines (500 Web-search, 500 
Data-serving, 500 Media-streaming). 

n Before mapping:  LS on 4 cores,  4 cores 
idle. 

n To map: batch workloads, composed of 
1500 mixed applications of 7 types

95% QoS 98% QoS
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n Bubble-Flux up to 2.2x better 
than Bubble-Up (62% vs. 27% 
utilization).

n Significant utilization when 
Bubble-Up fails to utilize any 
idle cores (24% vs. 0% 
utilization)

n Importance of combining 
prediction-based cluster-level 
mapping and precise server-
level QoS management
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Conclusion

n Bubble-Flux

n Dynamic Bubble + Flux Engine

n Ensure QoS while maximizing utilization

n Address three critical limitations of Bubble-Up

n Importance of combining prediction-based cluster-
level mapping and server-level QoS management
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