Bubble-Flux: Precise Online QoS Management for Increased Utilization in Warehouse Scale Computers

Hailong Yang, Alex Breslow Jason Mars and Lingjia Tang

CLARity (Cross-layer Architecture and Runtime) Lab

University of California, San Diego

Warehouse Scale Computers

Host large-scale Internet services

Over-provisioning Leads to Low Utilization

- Status quo
 - Over-provisioning to ensure quality of service for latency-sensitive applications
 - Low machine utilization

Over-provisioning Leads to Low Utilization

- Status quo
 - Over-provisioning to ensure quality of service for latency-sensitive applications
 - Low machine utilization

Performance of Search Render as Co-Runner Changes

Performance of Search Render as Co-Runner Changes

Performance of Search Render as Co-Runner Changes

Performance of Search Render as Co-Runner Changes

Uncertain QoS interference leads to overprovisioning and ultimately, expensive, low utilization

Goal

Predict and manage interference to facilitate "safe" colocation to increase utilization without QoS degradation

Corel corel cored cored

Predict and manage interference to facilitate "safe" colocation to increase utilization without QoS degradation

corel

core2

core3

server

core4

core2

core3

server

core4

Goal

Predict and manage interference to facilitate "safe" colocation to increase utilization without QoS degradation

Bubble-Up [Mars et al. Micro '11]

- State-of-the-art
- Static profiling to precisely predict the QoS interference and degradation for latency-sensitive applications
- 2% prediction error for large-scale applications on real hardware
- Insights:
 - Black box approach on real systems instead of detailed HW resource component modeling
 - Capture application's sensitivity to resource contention and aggressiveness separately

Limitation 1 - Inability to adapt, which significantly limits utilization opportunities

- Limitation 1 Inability to adapt, which significantly limits utilization opportunities
- Limitation 2 A priori knowledge required

- Limitation 1 Inability to adapt, which significantly limits utilization opportunities
- Limitation 2 A priori knowledge required
- Limitation 3 Limited Co-location Scalability

Bubble-Flux

Bubble-Flux

- Instantaneous measurement of the application's sensitivity for each live server in production
 - Real time instead of static profiling
 - Adapt to load changes: reflect application's sensitivity at the current load level
 - Scale beyond pairwise
 - Better prediction-based "safe" co-location identification to maximize utilization

Bubble-Flux

- Instantaneous measurement of the application's sensitivity for each live server in production
 - Real time instead of static profiling
 - Adapt to load changes: reflect application's sensitivity at the current load level
 - Scale beyond pairwise
 - Better prediction-based "safe" co-location identification to maximize utilization
- Continuous online precise QoS management after the task is mapped
 - Adapt to load, phase, input changes
 - Handles unknown applications and beyond pairwise colocations

Bubble-Flux Overview

Bubble-Flux Overview

Dynamic Bubble - Dynamically probe the machines to measure the latency-sensitive application's instantaneous sensitivity to the pressure on the shared hardware resources

Bubble-Flux Overview

- Dynamic Bubble Dynamically probe the machines to measure the latency-sensitive application's instantaneous sensitivity to the pressure on the shared hardware resources
- Online Flux Engine Continuous QoS monitoring and dynamic throttling of batch applications (Phase-in/Phase-out) for QoS management

- Beyond pairwise
- Low-overhead

Challenges and Design

- Challenges
 - To generate a complete sensitivity curve with minimum runtime overhead and interference
- Design: rely on the Flux engine to control the interference caused by the dynamic bubble
 - Phase-in and Phase-out (PiPo)
 - Measure the QoS delta when bubble is phased in and phased out with *controllable* interference (e.g., 2%)
 - Generate sensitivity curve without violating QoS target

- Continuous QoS monitoring after tasks are mapped
- PiPo (Phase-in/Phase-out): Dynamic throttling of batch applications for QoS management of latency-sensitive application

- Continuous QoS monitoring after tasks are mapped
- PiPo (Phase-in/Phase-out): Dynamic throttling of batch applications for QoS management of latency-sensitive application
- Respond to execution phase changes, input changes, and load variations
- Scale up beyond pairwise, work with unknown applications

- Monitor: hardware performance counters (IPC)
- Phase-in/Phase-out:
 SIGSTOP and
 SIGCONT
- Phase-in/phase-out ratio in the next iteration:

Algorithm 1: FLUX ENGINE

```
Input: A_{LS} a latency sensitive application,
   B a set of batch applications,
   QoS_{target} the target QoS value
 2 phaseIn_Ratio_i = 0.5
 3 phaseOut\_Ratio_i = 0.5
 4 phase\_window = 250ms
 5 while A_{LS}.isAlive() do
        phaseOut\_interval = phaseOut\_Ratio_i * phase\_window;
       Phase out batch applications in B for phaseOut_interval
       IPC_i^{pi} = \text{MEASURE\_}A_{LS}\text{\_IPC}(phaseOut\_interval);
        /* Measure the latency sensitive application's IPC
       during the B's Phase-Out period */
        End Phase-out period for all batch applications;
 9
       phaseIn\_interval = phaseIn\_Ratio_i * phase\_window;
10
       Phase in batch applications in B for phaseIn_interval ms;
11
       IPC_i^{po} = \text{MEASURE\_}A_{LS}\text{\_IPC}(phaseIn\_interval);
12
        End phase-in period for all batch applications;
13
14
       phaseIn_Ratio_{i+1} =
       update\_ratio(phaseIn\_Ratio_i, IPC_i^{po}, IPC_i^{pi}, QoS_{target});
        /* Update the Phase-in/Phase-out Ratio based on the
       monitored IPC */;
       phaseOut\_Ratio_{i+1} = 1 - phaseIn\_Ratio_{i+1};
       i+=1;
17 end
```

$$phaseInRatio_{i+1}^{pi} = phaseInRatio_{i}^{pi} + \frac{QoS_{target} - QoS_{i}}{QoS_{target}}$$

Evaluation Objectives

- How Bubble-Flux addresses 3 limitations of Bubble-Up:
 - Ll: Unknown applications
 - L2: Adapt to load/input/phase changes
 - L3: Scale beyond pair-wise
- Applying Bubble-Flux in datacenter scenarios

Evaluation Setup

- Benchmark Suites
 - Cloud suite (Web-search, Data-serving, Data-analytics, Media-streaming, etc.) [Ferdman '12]
 - SPEC CPU 2006
- Machine
 - 2.2 Ghz dual-socket Intel Xeon E5-2660 (Sandy bridge)
 - 8 cores + 32GB of DRAM per socket
 - 32KB L1 i-cache, 32KB L1 d-cache, 256 KB L2 cache, 20MB L3 cache

Flux: Effectiveness w/o a priori knowledge (L1)

Flux: Effectiveness w/o a priori knowledge (L1)

Without a priori knowledge, the Flux Engine achieves accurate QoS control while gaining utilization

- Generating instantaneous sensitivity curves using Dynamic Bubble

Dynamic bubble captures instantaneous sensitivity curves

- Dynamic bubble captures instantaneous sensitivity curves
- QoS is less sensitive to pressure on the shared resources when the load is low

- Dynamic bubble captures instantaneous sensitivity curves
- QoS is less sensitive to pressure on the shared resources when the load is low
- More scheduling opportunities for low-load

- Dynamic bubble captures instantaneous sensitivity curves
- QoS is less sensitive to pressure on the shared resources when the load is low
- More scheduling opportunities for low-load

Flux: Adapt to Load Fluctuation (L2)

Flux: Adapt to Load Fluctuation (L2)

The Flux Engine achieves higher utilization during low load period

Scale Beyond Pairwise (L3)

Workloads

WL1	lbm, lbm, libquantum, libquantum
m WL2	lbm, libquantum, soplex, milc
WL3	mcf, mcf, sphinx, soplex

Scale Beyond Pairwise (L3)

Workloads

WL1	lbm, lbm, libquantum, libquantum
m WL2	lbm, libquantum, soplex, milc
WL3	mcf, mcf, sphinx, soplex

The Flux Engine can manages more than 2 various co-runners

Put all together: Apply Bubble-Flux in a WSC

- Scenario 1
- 1000 machines (500 Web-search, 500 Data-serving).
- Before mapping: LS on 4 cores, 4 cores idle.
- To map: batch workloads, composed of 1000 mixed applications of 7 types

Put all together: Apply Bubble-Flux in a WSC

Scenario 1

- 1000 machines (500 Web-search, 500 Data-serving).
- Before mapping: LS on 4 cores, 4 cores idle.
- To map: batch workloads, composed of 1000 mixed applications of 7 types

Scenario 2

- Data-serving, 500 Media-streaming).
- Before mapping: LS on 4 cores, 4 cores idle.
- To map: batch workloads, composed of 1500 mixed applications of 7 types

Put all together: Apply Bubble-Flux in a WSC

- Bubble-Flux up to 2.2x better than Bubble-Up (62% vs. 27% utilization).
- Significant utilization when Bubble-Up fails to utilize any idle cores (24% vs. 0% utilization)
- Importance of combining prediction-based cluster-level mapping and precise serverlevel QoS management

Conclusion

- Bubble-Flux
 - Dynamic Bubble + Flux Engine
 - Ensure QoS while maximizing utilization
- Address three critical limitations of Bubble-Up
- Importance of combining prediction-based cluster-level mapping and server-level QoS management

