
Octopus-Man
QoS-Driven Task Management for Heterogeneous

Multicore in Warehouse Scale Computers
Vinicius Petrucci (UFBA)*, Michael Laurenzano, John Doherty, Yunqi Zhang (UMich),

Daniel Mossé (PITT), Jason Mars, Lingjia Tang (UMich) 

* Work done while the author was a post-doc at UMich

The 21st IEEE International Symposium on High Performance Computer Architecture (HPCA)
February 2015 — Bay Area, CA

Warehouse Scale Computers (WSC)

Computation shifting to the “cloud”

Google	 data	 center	 in	 Douglas	 County,	 Georgia	

Typical WSC workload

* Meisner et al. Power management of online data-intensive services. ISCA 2011

Load fluctuation and power consumption of Web-search running on Google servers *

0 12 24 36 48
0

20

40

60

80

100

Hour of the day

Pe
rc

en
t o

f M
ax

 C
ap

ac
ity

QPS
Server Power

Figure 1: Example diurnal pattern in queries per
second (QPS) for a Web Search cluster: Non-peak peri-
ods provide significant opportunity for energy-proportional servers.
For a perfectly energy proportional server, the percentage of peak
power consumed and peak QPS would be the same. Server power
is estimated for systems with 45% idle power.

dynamic range and, though sometimes lightly loaded, are
rarely fully idle, even at fine time scales. Cluster-grain ap-
proaches that scale cluster size in response to load variation
are inapplicable to OLDI services because the number of
servers provisioned in a cluster is fixed. Cluster sizing is de-
termined primarily based on data set size instead of incom-
ing request throughput. For a cluster to process an OLDI
data set for even a single query with acceptable latency, the
data set must be partitioned over thousands of nodes that
act in parallel. Hence, the granularity at which systems can
be turned o↵ is at cluster- rather than node-level.

Fundamentally, the architecture of OLDI services demands
that power be conserved on a per-server basis; each server
must exhibit energy-proportionality for the cluster to be
energy-e�cient, and the latency impact of any power man-
agement actions must be limited. We find that systems
supporting OLDI services require a new approach to power
management: coordination of active low-power modes across
the entire utilization spectrum. We demonstrate that nei-
ther power management of a single server component nor
uncoordinated power management of multiple components
provide desirable power-latency tradeo↵s.

We report the results of two major studies to better un-
derstand the power management needs of OLDI services.
First, we characterize a major OLDI workload, Google Web
Search, at thousand-server, cluster-wide scale in a produc-
tion environment to expose the opportunities (and non-op-
portunities) for active and idle low-power management. We
introduce a novel method of characterization, activity graphs,
which enable compact representation of the activity levels
of server components. Activity graphs provide designers the
ability to identify the potential of per-component active and
idle low-power modes at various service load levels. Second,
we perform a study of how latency constrains this potential,
making power management more di�cult. We construct and
validate a performance model of the Web Search workload
that predicts the 95th-percentile query latency under di↵er-
ent low-power modes. We demonstrate that our framework
can predict 95th-percentile latency within 10% error. Using
this framework, we explore the power-performance tradeo↵s
for available and future low-power modes.

We draw the following conclusions about power manage-
ment for major server components:

1) CPU active low-power modes provide the best
single power-performance mechanism, but are not
su�cient for energy-proportionality. Voltage and fre-
quency scaling (VFS) provides substantial power savings for

small changes in voltage and frequency in exchange for mod-
erate performance loss (see Figure 15). Looking forward,
industry trends indicate that VFS power savings will be re-
duced in future technology generations as the gap between
circuits’ nominal supply and threshold voltages shrink [6],
suggesting that power savings may not be realized from VFS
alone. Furthermore, we find that deep scaling yields poor
power-performance tradeo↵s.

2) CPU idle low-power modes are su�cient at the
core level, but better management is needed for
shared caches and on-chip memory controllers. We
find that modern CPU cores have aggressive clock gating
modes (e.g., C1E) that conserve energy substantially; power
gating modes (e.g., core C6) are usable, but provide little
marginal benefit at the system level (see Figure 16). How-
ever, we observe that non-core components such as shared
caches and memory controllers must remain active as long as
any core in the system is active. Thus, we find opportunity
for full socket idle management (e.g, socket C6) is minimal.

3) There is great opportunity to save power in the
memory system with active low-power modes during
ample periods of underutilization. We observe that the
memory bus is often highly underutilized for periods of sev-
eral seconds. There is a great opportunity to develop active
low-power modes for memory (e.g., [10]) and we demonstrate
that these would provide the greatest marginal addition to
a server’s low-power modes. Because the memory system is
so tightly coupled to CPU activity, it is rare for DRAM idle
periods to last long enough to take advantage of existing idle
low-power modes (e.g., self-refresh) (see Figure 7).

4) Unlike many other data center workloads, full-
system idle power management (e.g., PowerNap) is
ine↵ective for OLDI services. Previous research has
demonstrated that energy-proportionality can be approached
by rapidly transitioning between a full-system high-perform-
ance active and low-power inactive state to save power dur-
ing periods of brief idleness [20]. Whereas such a technique
works well for many workloads, we demonstrate that it is
inappropriate for the ODLI workload class. Because peri-
ods of full-system idleness are scarce in OLDI workloads, we
evaluate batching queries to coalesce idleness, but find that
the latency-power trade-o↵s are not enticing.

5) The only way to achieve energy-proportional op-
eration with acceptable query latency is coordina-
tion of full-system active low-power modes. Rather
than requiring deep power savings out of any one compo-
nent, we observe that systems must be able to leverage mod-
erate power savings in all their major components. Since
full-system idleness is scarce, power savings must be achieved
with active low-power modes. Furthermore, system-wide co-
ordination of power-performance states is necessary to main-
tain system balance and achieve acceptable per-query la-
tency.
The rest of this paper is organized as follows. In Section 2,

we discuss the unique aspects of OLDI services, how these
impact power management, and prior work. To identify op-
portunities for power management, we present our cluster-
scale Web Search characterization in Section 3. In Section
4, we develop and validate a Web Search performance model
to determine which of these opportunities are viable from a
latency perspective, and draw conclusions from this model
in Section 5. Finally, in Section 6, we conclude.

 (QPS = Queries Per Second)

Energy consumption is not proportional to the amount of computation!

Opportunity: heterogeneous multicores

• Heterogeneous multicore (Wimpy + Brawny cores)

• Power efficiency improvement

• Real system evaluation on Intel QuickIA (Atom + Xeon)

20QPS 30QPS 45QPS

Q
P

S
/W

at
t

(n
o

rm
al

iz
ed

)

 0x

 2x

 4x

 6x

 8x

 10x

 12x

 14x

5QPS 10QPS

Wimpy cores can be 7-13x more power-efficient than Brawny cores

Brawny cores achieve lower latency at all load levels

• What about performance (e.g., tail latency)?
Web-search running on Intel QuickIA

Opportunity: heterogeneous multicores

But wimpy cores can still meet the QoS at low load using much less power!

Insight: Exploit load fluctuation to improve energy efficiency and meet QoS

Opportunity: heterogeneous multicores

• Low load: Wimpy cores to reduce
power with satisfactory QoS

0 12 24 36 48
0

20

40

60

80

100

Hour of the day

Q
ue

rie
s-

Pe
r-S

ec
on

d
(%

 o
f m

ax
 c

ap
ac

ity
)

Heterogeneous server

Wimpy cores Brawny cores

Latency-sensitive
application

Opportunity: heterogeneous multicores

• High load: Brawny
cores to guarantee QoS

0 12 24 36 48
0

20

40

60

80

100

Hour of the day

Q
ue

rie
s-

Pe
r-S

ec
on

d
(%

 o
f m

ax
 c

ap
ac

ity
)

Heterogeneous server

Wimpy cores Brawny cores

Latency-sensitive
application

Insight: Exploit load fluctuation to improve energy efficiency and meet QoS

Octopus-Man: Goal

• To guarantee quality of service (e.g., bounding tail
latency) while maximizing energy efficiency  
 

… but this is not a trivial task!  
 
 
Naive design of tasking mapping/migrations on heterogenous
multicore can cause significant QoS violations

• Tension between responsiveness and stability

• Responsiveness

• react quickly to capture load fluctuations
and migrate tasks accordingly to meet QoS

• Stability

• do not over-react because it can cause
oscillatory behavior and hurt the QoS

Octopus-Man: Challenges

Responsiveness and stability

Slow reaction… QoS violations!

Time

QoS target

Latency

Time

Load

t1 t2 t3

t2 t3t1

1 wimpy 2 wimpy 3 wimpy

Core mappings

Time

QoS target

Latency

t2 t3t1

1 W 2W 1W 2W 1W 2W

Core mappings

t5 t6t4 t7

Time

QoS target

Latency

Time

Load

t1 t2 t3

t2 t3t1

1 wimpy 2 wimpy 3 wimpy

Core mappings

Time

QoS target

Latency

t2 t3t1

1 wimpy 2 wimpy

Core mappings
Fast reaction

QoS violations!Over-reaction

Time

QoS target

Latency

Time

Load

t1 t2 t3

t2 t3t1

1 wimpy 2 wimpy 3 wimpy

Core mappings

Time

QoS target

Latency

t2’t1’

1 wimpy 2 wimpy

Core mappings

Time

QoS target

Latency

Time

Load

t1 t2 t3

t2 t3t1

1 wimpy 2 wimpy 3 wimpy

Core mappings

Time

QoS target

Latency

t2’’ t3’’t1’’

1 W 2W 1W 2W 1W 2W
Core mappings

t5’’ t6’’t4’’ t7’’

Octopus-Man: Solution

• Octopus-Man monitor

• Application-level latency
monitoring

Heterogeneous server

Octopus-Man

QoS
Monitor

Octopus
Mapper

 Wimpy cores
Brawny cores

Cluster scheduler

Batch-mode
jobs

Latency-sensitive
jobs

• Octopus-Man Mapper

• Task-to-core management
for QoS guarantee and
energy efficiency

1) PID control system
• pros: well-known control methodology
• cons: parameter tuning via extensive offline app profiling 

2) Deadzone-based control system
• pros: simple online scheme based on QoS thresholds
• cons: sensitive to threshold parameter selection

Octopus-Man Mapper: Designs

• Can either effectively provide high QoS while maximizing
energy efficiency?
• Responsiveness and Stability

Design 1: PID control system

monitored
QoS

 co
mputin

g re
so

urce
s

QoS target
(e.g., 90%-tile

latency) =
r(t

) -
 y(

t)

GOAL: To keep the controlled system running as
close as possible to its specified QoS target

r

Het. multicore

u(t)e(t)

y(t)

∑
-

+
∑

Controller

P Kp e(t)

I Ki ∑e(t)

D Kd de(t)/dt

+

+

+

Latency-sensitive
application

Controlled System

PID Control Mapping

• Task-to-core mapping

• Mapping from the continuous PID output to a discrete
task-core mapping

• Parameter selection/tuning

• Classical control system method, root locus (Hellerstein
et al. 2004), is used to determine Kp, Ki, Kd parameter

• Responsiveness and stability

Violations

PID control: web-search

QoS

Core
Mapping

Throughput

Design 2: Deadzone State Machine

1"
Wimpy&

Ini&alize"
2"

Wimpy&
N"

Wimpy&
…&

QoS"alert"

QoS"safe"

QoS"alert"

QoS"safe"

M51"
Brawny&

K+1"
Brawny&

K"
Brawny&

…&

QoS"alert"

QoS"alert"QoS"alert"

QoS"safe" QoS"safe"

QoS"safe"

M"
Brawny&

QoS"alert"

QoS"safe"
k&is&minimal&value&so&that&perf(k)&>=&perf(w_1&+,&…&+&w_N)&

QoS alert: QoS variable > QoS target * UP_THR
QoS safe: QoS variable < QoS target * DOWN_THR

The	 deadzone	 thresholds	 impact	 the	 stability	 of	 the	 mapping	 algorithm!

Stability: selecting deadzone parameters
Web-search execution with UP thr=0.8, DOWN thr=0.3

QoS

Core
Mapping

Throughput

High QoS violations occur due to oscillatory behavior!

Solution: Dynamic deadzone selection

Time

Up_thr = 0.8

QoS target

. . .
Down_thr = 0.6

QoS target

Up_thr = 0.8

Down_thr = 0.6

t1

Time

Up_thr = 0.8

QoS target

. . .
Down_thr = 0.6

QoS target

Up_thr = 0.8

Down_thr = 0.6

QoS alert! (increase
computing capacity)

t1

Solution: Dynamic deadzone selection

Time

Up_thr = 0.8

QoS target

. . .
Down_thr = 0.6

QoS target

Up_thr = 0.8

Down_thr = 0.6

QoS safe! — but just
after a QoS alert

t1 t2

Solution: Dynamic deadzone selection

Time

Up_thr = 0.8

QoS target

. . .
Down_thr = 0.6

QoS target

Up_thr = 0.8

QoS alert again! — Oscillatory behavior!

t1 t2 t3

Solution: Dynamic deadzone selection

Time

Up_thr = 0.8

QoS target

. . .
Down_thr = 0.6

QoS target

Up_thr = 0.8

Decrease Down_thr

Down_thr = 0.5

Solution: Dynamic deadzone selection

t1 t2 t3

Time

Up_thr = 0.8

QoS target

. . .
Down_thr = 0.6

QoS target

Up_thr = 0.8

Down_thr = 0.6

With small probability (e.g, 1%) increase Down_thr

… tk

Solution: Dynamic deadzone selection

t1 t2 t3

Stability: Dealing with settling time

Memcached Websearch

Do not reconfigure the system during the course of task migration (gray area)!

QoS target = 500ms (90%-ile) QoS target = 1ms (95%-ile)

Evaluation

Experimental Platform: Intel QuickIA

Wimpy core socket

Front side bus

Brawny core socket

Atom

L2 cache
(1MB)

Atom
Xeon Xeon

L2 cache
(6MB)

Memory

All-brawny (Static) baseline: Web-search

Latency slack!

QoS

Core
Mapping

Throughput

PID vs Deadzone: web-search

PID control Deadzone control
(adaptive threshold)

QoS results

0%

25%

50%

75%

100%

Web-search Memcached

Static (Brawny) Static (Wimpy)
Octopus-Man (PID) Octopus-Man (Deadzone)

Energy reduction

0%

10.5%

21%

31.5%

42%

Octopus-Man (Deadzone)

Web-search Memcached

0%

3.75%

7.5%

11.25%

15%

Octopus-Man (Deadzone)

Full-systemCPU

Conclusion
• Octopus-Man: task management solution exploring

heterogeneous multicores

• challenges addressed on responsiveness and stability

• Evaluation on real heterogeneous platform (Intel QuickIA)

• Web-search and Memcached workloads

• Energy improvement of up to 41% (CPU) and 15% (full-
system) over all-brawny homogeneous multicores

• Batch processing throughput improvement of 34% (mean)
and 50% (max)

Thanks!

