

Octopus-Man

QoS-Driven Task Management for Heterogeneous Multicore in Warehouse Scale Computers

Vinicius Petrucci (UFBA)*, Michael Laurenzano, John Doherty, Yunqi Zhang (UMich), Daniel Mossé (PITT), Jason Mars, Lingjia Tang (UMich)

* Work done while the author was a post-doc at UMich

The 21st IEEE International Symposium on High Performance Computer Architecture (HPCA)

February 2015 — Bay Area, CA

Warehouse Scale Computers (WSC)

Google data center in Douglas County, Georgia

Typical WSC workload

Load fluctuation and power consumption of Web-search running on Google servers *

^{*} Meisner et al. Power management of online data-intensive services. ISCA 2011

Energy consumption is not proportional to the amount of computation!

- Heterogeneous multicore (Wimpy + Brawny cores)
 - Power efficiency improvement
- Real system evaluation on Intel QuickIA (Atom + Xeon)

Wimpy cores can be 7-13x more power-efficient than Brawny cores

What about performance (e.g., tail latency)?

Web-search running on Intel QuickIA

Brawny cores achieve lower latency at all load levels

But wimpy cores can still meet the QoS at low load using much less power!

Insight: Exploit *load fluctuation* to improve energy efficiency and meet QoS

Insight: Exploit *load fluctuation* to improve energy efficiency and meet QoS

Octopus-Man: Goal

 To guarantee quality of service (e.g., bounding tail latency) while maximizing energy efficiency

... but this is **not** a trivial task!

Naive design of tasking mapping/migrations on heterogenous multicore can cause *significant QoS violations*

Octopus-Man: Challenges

Tension between responsiveness and stability

Responsiveness

 react quickly to capture load fluctuations and migrate tasks accordingly to meet QoS

Stability

 do not over-react because it can cause oscillatory behavior and hurt the QoS

Responsiveness and stability

Octopus-Man: Solution

Octopus-Man monitor

Application-level latency monitoring

Octopus-Man Mapper

 Task-to-core management for QoS guarantee and energy efficiency

Octopus-Man Mapper: Designs

1) PID control system

- pros: well-known control methodology
- cons: parameter tuning via extensive offline app profiling

2) Deadzone-based control system

- pros: simple online scheme based on QoS thresholds
- cons: sensitive to threshold parameter selection
- Can either effectively provide high QoS while maximizing energy efficiency?
 - Responsiveness and Stability

Design 1: PID control system

GOAL: To keep the **controlled system** running *as* close as possible to its specified QoS target

PID Control Mapping

- Task-to-core mapping
 - Mapping from the continuous PID output to a discrete task-core mapping
- Parameter selection/tuning
 - Classical control system method, root locus (Hellerstein et al. 2004), is used to determine **Kp, Ki, Kd** parameter
 - Responsiveness and stability

PID control: web-search

Design 2: Deadzone State Machine

QoS alert: QoS variable > QoS target * UP_THR

QoS safe: QoS variable < QoS target * DOWN_THR

The deadzone thresholds impact the stability of the mapping algorithm!

Stability: selecting deadzone parameters

Web-search execution with UP thr=0.8, DOWN thr=0.3

High QoS violations occur due to oscillatory behavior!

Stability: Dealing with settling time

Do not reconfigure the system during the course of task migration (gray area)!

Evaluation

Experimental Platform: Intel QuickIA

All-brawny (Static) baseline: Web-search

PID vs Deadzone: web-search

PID control

Deadzone control (adaptive threshold)

QoS results

Energy reduction

CPU

Full-system

Conclusion

- Octopus-Man: task management solution exploring heterogeneous multicores
 - challenges addressed on responsiveness and stability
- Evaluation on real heterogeneous platform (Intel QuickIA)
 - Web-search and Memcached workloads
- Energy improvement of up to 41% (CPU) and 15% (full-system) over all-brawny homogeneous multicores
 - Batch processing throughput improvement of 34% (mean) and 50% (max)

Thanks!