
Octopus-Man
QoS-Driven Task Management for Heterogeneous 

Multicore in Warehouse Scale Computers
Vinicius Petrucci (UFBA)*, Michael Laurenzano, John Doherty, Yunqi Zhang (UMich),  

Daniel Mossé (PITT), Jason Mars, Lingjia Tang (UMich) 

* Work done while the author was a post-doc at UMich

The 21st IEEE International Symposium on High Performance Computer Architecture (HPCA)
February 2015 — Bay Area, CA



Warehouse Scale Computers (WSC) 

Computation shifting to the “cloud”

Google	  data	  center	  in	  Douglas	  County,	  Georgia	  



Typical WSC workload

* Meisner et al. Power management of online data-intensive services. ISCA 2011

Load fluctuation and power consumption of Web-search running on Google servers *
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Figure 1: Example diurnal pattern in queries per
second (QPS) for a Web Search cluster: Non-peak peri-
ods provide significant opportunity for energy-proportional servers.
For a perfectly energy proportional server, the percentage of peak
power consumed and peak QPS would be the same. Server power
is estimated for systems with 45% idle power.

dynamic range and, though sometimes lightly loaded, are
rarely fully idle, even at fine time scales. Cluster-grain ap-
proaches that scale cluster size in response to load variation
are inapplicable to OLDI services because the number of
servers provisioned in a cluster is fixed. Cluster sizing is de-
termined primarily based on data set size instead of incom-
ing request throughput. For a cluster to process an OLDI
data set for even a single query with acceptable latency, the
data set must be partitioned over thousands of nodes that
act in parallel. Hence, the granularity at which systems can
be turned o↵ is at cluster- rather than node-level.

Fundamentally, the architecture of OLDI services demands
that power be conserved on a per-server basis; each server
must exhibit energy-proportionality for the cluster to be
energy-e�cient, and the latency impact of any power man-
agement actions must be limited. We find that systems
supporting OLDI services require a new approach to power
management: coordination of active low-power modes across
the entire utilization spectrum. We demonstrate that nei-
ther power management of a single server component nor
uncoordinated power management of multiple components
provide desirable power-latency tradeo↵s.

We report the results of two major studies to better un-
derstand the power management needs of OLDI services.
First, we characterize a major OLDI workload, Google Web
Search, at thousand-server, cluster-wide scale in a produc-
tion environment to expose the opportunities (and non-op-
portunities) for active and idle low-power management. We
introduce a novel method of characterization, activity graphs,
which enable compact representation of the activity levels
of server components. Activity graphs provide designers the
ability to identify the potential of per-component active and
idle low-power modes at various service load levels. Second,
we perform a study of how latency constrains this potential,
making power management more di�cult. We construct and
validate a performance model of the Web Search workload
that predicts the 95th-percentile query latency under di↵er-
ent low-power modes. We demonstrate that our framework
can predict 95th-percentile latency within 10% error. Using
this framework, we explore the power-performance tradeo↵s
for available and future low-power modes.

We draw the following conclusions about power manage-
ment for major server components:

1) CPU active low-power modes provide the best
single power-performance mechanism, but are not
su�cient for energy-proportionality. Voltage and fre-
quency scaling (VFS) provides substantial power savings for

small changes in voltage and frequency in exchange for mod-
erate performance loss (see Figure 15). Looking forward,
industry trends indicate that VFS power savings will be re-
duced in future technology generations as the gap between
circuits’ nominal supply and threshold voltages shrink [6],
suggesting that power savings may not be realized from VFS
alone. Furthermore, we find that deep scaling yields poor
power-performance tradeo↵s.

2) CPU idle low-power modes are su�cient at the
core level, but better management is needed for
shared caches and on-chip memory controllers. We
find that modern CPU cores have aggressive clock gating
modes (e.g., C1E) that conserve energy substantially; power
gating modes (e.g., core C6) are usable, but provide little
marginal benefit at the system level (see Figure 16). How-
ever, we observe that non-core components such as shared
caches and memory controllers must remain active as long as
any core in the system is active. Thus, we find opportunity
for full socket idle management (e.g, socket C6) is minimal.

3) There is great opportunity to save power in the
memory system with active low-power modes during
ample periods of underutilization. We observe that the
memory bus is often highly underutilized for periods of sev-
eral seconds. There is a great opportunity to develop active
low-power modes for memory (e.g., [10]) and we demonstrate
that these would provide the greatest marginal addition to
a server’s low-power modes. Because the memory system is
so tightly coupled to CPU activity, it is rare for DRAM idle
periods to last long enough to take advantage of existing idle
low-power modes (e.g., self-refresh) (see Figure 7).

4) Unlike many other data center workloads, full-
system idle power management (e.g., PowerNap) is
ine↵ective for OLDI services. Previous research has
demonstrated that energy-proportionality can be approached
by rapidly transitioning between a full-system high-perform-
ance active and low-power inactive state to save power dur-
ing periods of brief idleness [20]. Whereas such a technique
works well for many workloads, we demonstrate that it is
inappropriate for the ODLI workload class. Because peri-
ods of full-system idleness are scarce in OLDI workloads, we
evaluate batching queries to coalesce idleness, but find that
the latency-power trade-o↵s are not enticing.

5) The only way to achieve energy-proportional op-
eration with acceptable query latency is coordina-
tion of full-system active low-power modes. Rather
than requiring deep power savings out of any one compo-
nent, we observe that systems must be able to leverage mod-
erate power savings in all their major components. Since
full-system idleness is scarce, power savings must be achieved
with active low-power modes. Furthermore, system-wide co-
ordination of power-performance states is necessary to main-
tain system balance and achieve acceptable per-query la-
tency.
The rest of this paper is organized as follows. In Section 2,

we discuss the unique aspects of OLDI services, how these
impact power management, and prior work. To identify op-
portunities for power management, we present our cluster-
scale Web Search characterization in Section 3. In Section
4, we develop and validate a Web Search performance model
to determine which of these opportunities are viable from a
latency perspective, and draw conclusions from this model
in Section 5. Finally, in Section 6, we conclude.

 (QPS = Queries Per Second)

Energy consumption is not proportional to the amount of computation!



Opportunity: heterogeneous multicores

• Heterogeneous multicore (Wimpy + Brawny cores) 

• Power efficiency improvement 

• Real system evaluation on Intel QuickIA (Atom + Xeon)
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Wimpy cores can be 7-13x more power-efficient than Brawny cores



Brawny cores achieve lower latency at all load levels

• What about performance (e.g., tail latency)?  
Web-search running on Intel QuickIA

Opportunity: heterogeneous multicores

But wimpy cores can still meet the QoS at low load using much less power!



Insight: Exploit load fluctuation to improve energy efficiency and meet QoS

Opportunity: heterogeneous multicores

• Low load: Wimpy cores to reduce 
power with satisfactory QoS
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Opportunity: heterogeneous multicores

• High load: Brawny 
cores to guarantee QoS
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Insight: Exploit load fluctuation to improve energy efficiency and meet QoS



Octopus-Man: Goal

• To guarantee quality of service (e.g., bounding tail 
latency) while maximizing energy efficiency  
 

… but this is not a trivial task!  
 
 
Naive design of tasking mapping/migrations on heterogenous 
multicore can cause significant QoS violations



• Tension between responsiveness and stability

• Responsiveness

• react quickly to capture load fluctuations 
and migrate tasks accordingly to meet QoS 

• Stability  

• do not over-react because it can cause 
oscillatory behavior and hurt the QoS

Octopus-Man: Challenges



Responsiveness and stability

Slow reaction… QoS violations!
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Octopus-Man: Solution

• Octopus-Man monitor

• Application-level latency 
monitoring

Heterogeneous server

Octopus-Man

QoS
Monitor

Octopus
Mapper

 Wimpy cores
Brawny cores

Cluster scheduler

Batch-mode
jobs

Latency-sensitive 
jobs

• Octopus-Man Mapper

• Task-to-core management 
for QoS guarantee and 
energy efficiency



1) PID control system
• pros: well-known control methodology 
• cons: parameter tuning via extensive offline app profiling 

2) Deadzone-based control system
• pros: simple online scheme based on QoS thresholds  
• cons: sensitive to threshold parameter selection

Octopus-Man Mapper: Designs

• Can either effectively provide high QoS while maximizing 
energy efficiency? 
• Responsiveness and Stability



Design 1: PID control system
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PID Control Mapping

• Task-to-core mapping 

• Mapping from the continuous PID output to a discrete 
task-core mapping 

• Parameter selection/tuning 

• Classical control system method, root locus (Hellerstein 
et al. 2004), is used to determine Kp, Ki, Kd parameter 

• Responsiveness and stability



Violations

PID control: web-search

QoS 

Core  
Mapping

Throughput



Design 2: Deadzone State Machine
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QoS alert: QoS variable > QoS target * UP_THR 
QoS safe: QoS variable < QoS target * DOWN_THR

The	  deadzone	  thresholds	  impact	  the	  stability	  of	  the	  mapping	  algorithm!



Stability: selecting deadzone parameters
Web-search execution with UP thr=0.8, DOWN thr=0.3

QoS 

Core  
Mapping

Throughput

High QoS violations occur due to oscillatory behavior! 



Solution: Dynamic deadzone selection
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Time

Up_thr = 0.8

QoS target

. . .
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QoS alert again! — Oscillatory behavior!
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Stability: Dealing with settling time

Memcached Websearch 

Do not reconfigure the system during the course of task migration (gray area)!

QoS target = 500ms (90%-ile) QoS target = 1ms (95%-ile)



Evaluation



Experimental Platform: Intel QuickIA
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All-brawny (Static) baseline: Web-search

Latency slack!
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PID vs Deadzone: web-search

PID control Deadzone control 
(adaptive threshold)



QoS results
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Energy reduction
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Conclusion
• Octopus-Man: task management solution exploring 

heterogeneous multicores 

• challenges addressed on responsiveness and stability  

• Evaluation on real heterogeneous platform (Intel QuickIA) 

• Web-search and Memcached workloads 

• Energy improvement of up to 41% (CPU) and 15% (full-
system) over all-brawny homogeneous multicores 

• Batch processing throughput improvement of 34% (mean) 
and 50% (max)



Thanks!


